ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-exceptional embedding construction of the heterotic M5: Emergence of SU(2)-flavor sector

121   0   0.0 ( 0 )
 نشر من قبل Urs Schreiber
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new super-exceptional embedding construction of the heterotic M5-branes sigma-model was recently shown to produce, at leading order in the super-exceptional vielbein components, the super-Nambu-Goto (Green-Schwarz-type) Lagrangian for the embedding fields plus the Perry-Schwarz Lagrangian for the free abelian self-dual higher gauge field. Beyond that, further fields and interactions emerge in the model, arising from probe M2- and probe M5-brane wrapping modes. Here we classify the full super-exceptional field content and work out some of its characteristic interactions from the rich super-exceptional Lagrangian of the model. We show that SU(2)xU(1)-valued scalar and vector fields emerge from probe M2- and M5-branes wrapping the vanishing cycle in the A_1-type singularity; together with a pair of spinor fields of U(1)-hypercharge +-1 and each transforming as SU(2) iso-doublets. Then we highlight the appearance of a WZW-type term in the super-exceptional PS-Lagrangian and find that on the electromagnetic field it gives the first-order non-linear DBI-correction, while on the iso-vector scalar field it has the form characteristic of the coupling of vector mesons to pions via the Skyrme baryon current. We discuss how this is suggestive of a form of SU(2)-flavor chiral hadrodynamics emerging on the single (N=1) M5 brane, different from, but akin to, holographic large-$N$ QCD.



قيم البحث

اقرأ أيضاً

In the quest for the mathematical formulation of M-theory, we consider three major open problems: a first-principles construction of the single (abelian) M5-brane Lagrangian density, the origin of the gauge field in heterotic M-theory, and the supers ymmetric enhancement of exceptional M-geometry. By combining techniques from homotopy theory and from supergeometry to what we call super-exceptional geometry within super-homotopy theory, we present an elegant joint solution to all three problems. This leads to a unified description of the Nambu-Goto, Perry-Schwarz, and topological Yang-Mills Lagrangians in the topologically nontrivial setting. After explaining how charge quantization of the C-field in Cohomotopy reveals DAuria-Fres hidden supergroup of 11d supergravity as the super-exceptional target space, in the sense of Bandos, for M5-brane sigma-models, we prove, in exceptional generalization of the doubly-supersymmetric super-embedding formalism, that a Perry-Schwarz-type Lagrangian for single (abelian) M5-branes emerges as the super-exceptional trivialization of the M5-brane cocycle along the super-exceptional embedding of the half M5-brane locus, super-exceptionally compactified on the Horava-Witten circle fiber. From inspection of the resulting 5d super Yang-Mills Lagrangian we find that the extra fermion field appearing in super-exceptional M-geometry, whose physical interpretation had remained open, is the M-theoretic avatar of the gaugino field.
219 - Yuji Tachikawa 2021
Spacetime theories obtained from perturbative string theory constructions are automatically free of perturbative anomalies, but it is not settled whether they are always free of global anomalies. Here we discuss a possible $mathbb{Z}_{24}$-valued pur e gravitational anomaly of heterotic compactifications down to two spacetime dimensions, and point out that it can be shown to vanish using the theory of topological modular forms, assuming the validity of the Stolz-Teichner conjecture.
Extending the methods developed in our previous works (arXiv:1110.3949, arXiv:1205.6060), we compute the three-point functions at strong coupling of the non-BPS states with large quantum numbers corresponding to the composite operators belonging to t he so-called SU(2) sector in the $mathcal{N}=4$ super-Yang-Mills theory in four dimensions. This is achieved by the semi-classical evaluation of the three-point functions in the dual string theory in the $AdS_3 times S^3$ spacetime, using the general one-cut finite gap solutions as the external states. In spite of the complexity of the contributions from various parts in the intermediate stages, the final answer for the three-point function takes a remarkably simple form, exhibiting the structure reminiscent of the one obtained at weak coupling. In particular, in the Frolov-Tseytlin limit the result is expressed in terms of markedly similar integrals, however with different contours of integration. We discuss a natural mechanism for introducing additional singularities on the worldsheet without affecting the infinite number of conserved charges, which can modify the contours of integration.
The integrability of the $Lambda-$Einstein-nonlinear $SU(2)$ $sigma$-model with nonvanishing cosmological charge is studied. We apply the method of singularity analysis of differential equations and we show that the equations for the gravitational fi eld are integrable. The first few terms of the solution are presented.
We consider the highest-energy state in the su(1|1) sector of N=4 super Yang-Mills theory containing operators of the form tr(Z^{L-M} psi^M) where Z is a complex scalar and psi is a component of gaugino. We show that this state corresponds to the ope rator tr(psi^L) and can be viewed as an analogue of the antiferromagnetic state in the su(2) sector. We find perturbative expansions of the energy of this state in both weak and strong t Hooft coupling regimes using asymptotic gauge theory Bethe ansatz equations. We also discuss a possible analog of this state in the conjectured string Bethe ansatz equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا