ترغب بنشر مسار تعليمي؟ اضغط هنا

Kilohertz electron paramagnetic resonance spectroscopy of single nitrogen centers at zero magnetic field

67   0   0.0 ( 0 )
 نشر من قبل Fazhan Shi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron paramagnetic resonance spectroscopy (EPR) is among the most important analytical tools in physics, chemistry, and biology. The emergence of nitrogen-vacancy (NV) centers in diamond, serving as an atomic-sized magnetometer, has promoted this technique to single-spin level, even under ambient conditions. Despite the enormous progress in spatial resolution, the current megahertz spectral resolution is still insufficient to resolve key heterogeneous molecular information. A major challenge is the short coherence times of the sample electron spins. Here, we address this challenge by employing a magnetic noise-insensitive transition between states of different symmetry. We demonstrate a 27-fold narrower spectrum of single substitutional nitrogen (P1) centers in diamond with linewidth of several kilohertz, and then some weak couplings can be resolved. Those results show both spatial and spectral advances of NV center-based EPR, and provide a route towards analytical (EPR) spectroscopy at single-molecule level.

قيم البحث

اقرأ أيضاً

Electron paramagnetic resonance (EPR) spectroscopy is an important technology in physics, chemistry, materials science, and biology. Sensitive detection with a small sample volume is a key objective in these areas, because it is crucial, for example, for the readout of a highly packed spin based quantum memory or the detection of unlabeled metalloproteins in a single cell. In conventional EPR spectrometers, the energy transfer from the spins to the cavity at a Purcell enhanced rate plays an essential role and requires the spins to be resonant with the cavity, however the size of the cavity (limited by the wavelength) makes it difficult to improve the spatial resolution. Here, we demonstrate a novel EPR spectrometer using a single artificial atom as a sensitive detector of spin magnetization. The artificial atom, a superconducting flux qubit, provides advantages both in terms of its quantum properties and its much stronger coupling with magnetic fields. We have achieved a sensitivity of $sim$400 spins/$sqrt{mathrm{Hz}}$ with a magnetic sensing volume around $10^{-14} lambda^3$ (50 femto-liters). This corresponds to an improvement of two-order of magnitude in the magnetic sensing volume compared with the best cavity based spectrometers while maintaining a similar sensitivity as those spectrometers . Our artificial atom is suitable for scaling down and thus paves the way for measuring single spins on the nanometer scale.
Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron fine and hyperfine interaction. However, the ZF-ESR method has been rarely used due to the low sensitivity and the requirement of much larger samples than conventional ESR. In this work, we present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen-vacancy center in diamond. We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum. This method opens the door to practical applications of ZF-ESR spectroscopy, such as investigation of the structure and polarity information in spin-modified organic and biological systems.
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through gen eral laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g-factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.
Over the years, an enormous effort has been made to establish nitrogen vacancy (NV) centers in diamond as easily accessible and precise magnetic field sensors. However, most of their sensing protocols rely on the application of bias magnetic fields, preventing their usage in zero- or low-field experiments. We overcome this limitation by exploiting the full spin $S=1$ nature of the NV center, allowing us to detect nuclear spin signals at zero- and low-field with a linearly polarized microwave field. As conventional dynamical decoupling protocols fail in this regime, we develop new robust pulse sequences and optimized pulse pairs, which allow us to sense temperature and weak AC magnetic fields and achieve an efficient decoupling from environmental noise. The sensing scheme is applicable to common NV center based setups and opens new frontiers for the application of NV centers as magnetic field sensors in the zero- and low-field regime.
A nitrogen-vacancy (NV) center in diamond is a promising sensor for nanoscale magnetic sensing. Here we report electron spin resonance (ESR) spectroscopy using a single NV center in diamond. First, using a 230 GHz ESR spectrometer, we performed ensem ble ESR of a type-Ib sample crystal and identified a substitutional single nitrogen impurity as a major paramagnetic center in the sample crystal. Then, we carried out free-induction decay and spin echo measurements of the single NV center to study static and dynamic properties of nanoscale bath spins surrounding the NV center. We also measured ESR spectrum of the bath spins using double electron-electron resonance spectroscopy with the single NV center. The spectrum analysis of the NV-based ESR measurement identified that the detected spins are the nitrogen impurity spins. The experiment was also performed with several other single NV centers in the diamond sample and demonstrated that the properties of the bath spins are unique to the NV centers indicating the probe of spins in the microscopic volume using NV-based ESR. Finally, we discussed the number of spins detected by the NV-based ESR spectroscopy. By comparing the experimental result with simulation, we estimated the number of the detected spins to be $leq$ 50 spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا