ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-Time Uncertainty Relation for Absorbing Boundaries

288   0   0.0 ( 0 )
 نشر من قبل Roderich Tumulka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Roderich Tumulka




اسأل ChatGPT حول البحث

We prove the uncertainty relation $sigma_T , sigma_E geq hbar/2$ between the time $T$ of detection of a quantum particle on the surface $partial Omega$ of a region $Omegasubset mathbb{R}^3$ containing the particles initial wave function, using the absorbing boundary rule for detection time, and the energy $E$ of the initial wave function. Here, $sigma$ denotes the standard deviation of the probability distribution associated with a quantum observable and a wave function. Since $T$ is associated with a POVM rather than a self-adjoint operator, the relation is not an instance of the standard version of the uncertainty relation due to Robertson and Schrodinger. We also prove that if there is nonzero probability that the particle never reaches $partial Omega$ (in which case we write $T=infty$), and if $sigma_T$ denotes the standard deviation conditional on the event $T<infty$, then $sigma_T , sigma_E geq (hbar/2) sqrt{mathrm{Prob}(T<infty)}$.



قيم البحث

اقرأ أيضاً

118 - Klaus Bering 2014
We prove a double-inequality for the product of uncertainties for position and momentum of bound states for 1D quantum mechanical systems in the semiclassical limit.
In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the uncertainty regions given by all vectors, whose components are specified by the variances of the three angular moment um components. A basic feature of this set is a lower bound for the sum of the three variances. We give a method for obtaining optimal lower bounds for uncertainty regions for general operator triples, and evaluate these for small s. Further lower bounds are derived by generalizing the technique by which Robertson obtained his state-dependent lower bound. These are optimal for large s, since they are saturated by states taken from the Holstein-Primakoff approximation. We show that, for all s, all variances are consistent with the so-called vector model, i.e., they can also be realized by a classical probability measure on a sphere of radius sqrt(s(s+1)). Entropic uncertainty relations can be discussed similarly, but are minimized by different states than those minimizing the variances for small s. For large s the Maassen-Uffink bound becomes sharp and we explicitly describe the extremalizing states. Measurement uncertainty, as recently discussed by Busch, Lahti and Werner for position and momentum, is introduced and a generalized observable (POVM) which minimizes the worst case measurement uncertainty of all angular momentum components is explicitly determined, along with the minimal uncertainty. The output vectors for the optimal measurement all have the same length r(s), where r(s)/s goes to 1 as s tends to infinity.
Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefi nite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result $x$ rather than y, for any pair (x,y). This induces a notion of optimal transport cost for a pair of probability distributions, and we include an appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a true value is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.
Uncertainty lower bounds for parameter estimations associated with a unitary family of mixed-state density matrices are obtained by embedding the space of density matrices in the Hilbert space of square-root density matrices. In the Hilbert-space set up the measure of uncertainty is given by the skew information of the second kind, while the uncertainty lower bound is given by the Wigner-Yanase skew information associated with the conjugate observable. Higher-order corrections to the uncertainty lower bound are determined by higher-order quantum skew moments; expressions for these moments are worked out in closed form.
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here w e prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order $alpha$ rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا