ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold, dry, windy, and UV irradiated -- surveying Mars relevant conditions in Ojos del Salado Volcano (Andes Mountains, Chile)

66   0   0.0 ( 0 )
 نشر من قبل Bernadett P\\'al
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Special Collection of papers in this issue of Astrobiology provide an overview of the characteristics and potential for future exploration of the Ojos del Salado volcano, located in the Andes Mountains in front of the Atacama Desert in northern Chile. The main benefits of this site compared with others are the combination of strong UV radiation, the presence of permafrost, and geothermal activity within a dry terrain. The interaction between limited snow events and wind results in snow patches buried under a dry soil surface. This leads to ephemeral water streams that only flow duringdaytime hours. On this volcano, which has the highest located subsurface temperature monitoring systems reported to date, seasonal melting of the permafrost is followed by fast percolation events. This is due to the high porosity of these soils. The results are landforms that shaped by the strong winds. At this site, both thermal springs and lakes (the latter arising from melting ice) provide habitats for life; a 6480m high lake heated by volcanic activity shows both warm and cold sediments that contain a number of different microbial species, including psychrophiles. Where the permafrost melts, thawing ponds have formed at 5900m that is dominated by populations of Bacteroidetes and Proteobacteria, while in the pond sediments and the permafrost itself Acidobacteria, Actinobacteria, Bacteroidetes, Patescibacteria, Proteobacteria, and Verrucomicrobia are abundant. In turn, fumaroles show the presence of acidophilic iron-oxidizers and iron-reducing species. In spite of the extreme conditions reported at Ojos del Salado, this site is easily accessible.



قيم البحث

اقرأ أيضاً

We report a previously unnoticed annually repeating phenomenon consisting of the daily formation of an extremely elongated cloud extending as far as 1800 km westward from Arsia Mons. It takes place in the Solar Longitude (Ls) range of ~220-320, aroun d the Southern solstice. We study this Arsia Mons Elongated Cloud (AMEC) using images from different orbiters, including ESA Mars Express, NASA MAVEN, Viking 2, MRO, and ISRO Mars Orbiter Mission (MOM). We study the AMEC in detail in Martian Year (MY) 34 in terms of Local Time and Ls and find that it exhibits a very rapid daily cycle: the cloud growth starts before sunrise on the western slope of the volcano, followed by a westward expansion that lasts 2.5 hours with a velocity of around 170 m/s in the mesosphere (~45 km over the areoid). The cloud formation then ceases, it detaches from its formation point, and continues moving westward until it evaporates before the afternoon, when most sun-synchronous orbiters observe. Moreover we comparatively study observations from different years (i.e. MYs 29-34) in search of interannual variations and find that in MY33 the cloud exhibits lower activity, whilst in MY34 the beginning of its formation was delayed compared to other years, most likely due to the Global Dust Storm. This phenomenon takes place in a season known for the general lack of clouds on Mars. In this paper we focus on observations, and a theoretical interpretation will be the subject of a separate paper.
We investigate the presence of COMs in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre line survey using the IRAM30m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5 arcsec resolution maps of the H2CO 5(1,5)-4(1,4) and C18O 3-2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, H13-2CO, and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-LTE LVG excitation analysis for molecules with known collisional rate coefficients, suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150-250 K and Td > 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40-50 K). We find a HCO/H2CO/CH3OH = 1/5/3 abundance ratio. These ratios are different from those inferred in hot cores and shocks.
We present the first results of K2-OjOS, a collaborative project between professional and amateur astronomers primarily aimed to detect, characterize and validate new extrasolar planets. For this work, 10 amateur astronomers looked for planetary sign als by visually inspecting the 20,427 light curves of K2 campaign 18 (C18). They found 42 planet candidates, of which 18 are new detections and 24 had been detected in the overlapping C5 by previous works. We used archival photometric and spectroscopic observations, as well as new high-spatial resolution images in order to carry out a complete analysis of the candidates found, including a homogeneous characterization of the host stars, transit modeling, search for transit timing variations and statistical validation. As a result, we report four new planets (K2-XXX b, K2-XXX b, K2-XXX b, and K2-XXX b) and 14 planet candidates. Besides, we refine the transit ephemeris of the previously published planets and candidates by modeling C5, C16 (when available) and C18 photometric data jointly, largely improving the period and mid-transit time precision. Regarding individual systems, we highlight the new planet K2-XXX b and candidate EPIC211537087.02 being near a 2:1 period commensurability, the detection of significant TTVs in the bright star K2-184 (V = 10.35), the location of K2-103 b inside the habitable zone according to optimistic models, the detection of a new single transit in the known system K2-274, and the disposition reassignment of K2-120 b, which we consider as a planet candidate as the origin of the signal can not be ascertained.
78 - Adrian J. Brown 2020
Mars Sample Return consists of three separate missions, the first of which is the Mars2020 rover which will land at Jezero crater on February 18, 2021. We describe here our remote sensing study of a particular unit that outcrops in Jezero crater that is likely to be part of the return sample suite. We report on our efforts to characterize the olivine unit using data from the CRISM instrument, including the grain size and Fe/Mg (Fo) number of the olivine. We also discuss the astrobiological significance of the unit by analogy with the stromatolite-bearing early Archean Warrawoona group in Western Australia. We also discuss the current state of the MSR architecture.
The Mars Express (MEX) mission has been successfully operated around Mars since 2004. Among many results, MEX has provided some of the most accurate astrometric data of the two Mars moons, Phobos and Deimos. In this work we present new ephemerides of Mars moons benefitting from all previously published astrometric data to the most recent MEX SRC data. All in all, observations from 1877 until 2018 and including spacecraft measurements from Mariner 9 to MEX were included. Assuming a homogeneous interior, we fitted Phobos forced libration amplitude simultaneously with the Martian tidal k2/Q ratio and the initial state of the moons. Our solution of the physical libration 1.09 +/- 0.01 degrees deviates notably from the homogeneous solution. But considering the very low error bar, this may essentially suggest the necessity to consider higher order harmonics, with an improved rotation model, in the future. While most data could be successfully fitted, we found a disagreement between the Mars Reconnaissance Orbiter and the Mars Express astrometric data at the kilometer level probably associated with a biased phase correction. The present solution precision is expected at the level of a few hundreds of meters for Phobos and several hundreds of meters for Deimos for the coming years. The real accuracy of our new ephemerides will have to be confirmed by confrontation with independent observational means.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا