ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical relations between conductive and radiative heat transfer

322   0   0.0 ( 0 )
 نشر من قبل Prashanth Venkataram
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general nonequilibrium Greens function formalism for modeling heat transfer in systems characterized by linear response that establishes the formal algebraic relationships between phonon and radiative conduction, and reveals how upper bounds for the former can also be applied to the latter. We also propose an extension of this formalism to treat systems susceptible to the interplay of conductive and radiative heat transfer, which becomes relevant in atomic systems and at nanometric and smaller separations where theoretical descriptions which treat each phenomenon separately may be insufficient. We illustrate the need for such coupled descriptions by providing predictions for a low-dimensional system of carbyne wires in which the total heat transfer can differ from the sum of its radiative and conductive contributions. Our framework has ramifications for understanding heat transfer between large bodies that may approach direct contact with each other or that may be coupled by atomic, molecular, or interfacial film junctions.



قيم البحث

اقرأ أيضاً

We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps $d$ and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction--radiation in this geometry. We find that these effects can be prominent in typical materials (e.g. silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.
We show that periodic multilayered structures allow to drastically enhance near-field radiative heat transfer between nanoparticles. In particular, when the two nanoparticles are placed on each side of the multilayered structure, at the same interpar ticle distance the resulting heat transfer is more than five orders of magnitude higher than that in the absence of the multilayered structure. This enhancement takes place in a broad range of distances and is due to the fact that the intermediate multilayered structure supports hyperbolic phonon polaritons with the key feature that the edge frequencies of the Type I and Type II Reststrahlen bands coincide with each other at a value extremely close to the particle resonance. This allow a very high-k evanescent modes resonating with the nanoparticles. Our predictions can be relevant for effective managing of energy at the nano-scale.
Metasurfaces, the two-dimensional (2D) counterpart of metamaterials, have recently attracted a great attention due to their amazing properties such as negative refraction, hyperbolic dispersion, manipulation of the evanescent spectrum. In this work, we propose a theory model for the near field radiative heat transfer (NFRHT) between two nanoparticles in the presence of an anisotropic metasurface. Specifically, we set the metasurface as an array of graphene strips (GS) since it is an ideal platform to implement any metasurface topology, ranging from isotropic to hyperbolic propagation. We show that the NFRHT between two nanoparticles can not only be significantly amplified when they are placed in proximity of the GS, but also be regulated over several orders of magnitude. In this configuration, the anisotropic surface plasmon polaritons (SPPs) supported by the GS are excited and provide a new channel for the near-field energy transport. We analyze how the conductance between two nanoparticles depends on the orientation, the structure parameters and the chemical potential of the GS, on the particle-surface or the particle-surface distances by clearly identifying the characteristics of the anisotropic SPPs such as dispersion relations, propagation length and decay length. Our findings provide a powerful way to regulate the energy transport in the particle systems, meanwhile in turn, open up a way to explore the anisotropic optical properties of the metasurface based on the measured heat transfer properties.
Recent experimental advances probing coherent phonon and electron transport in nanoscale devices at contact have motivated theoretical channel-based analyses of conduction based on the nonequilibrium Greens function formalism. The transmission throug h each channel has been known to be bounded above by unity, yet actual transmissions in typical systems often fall far below these limits. Building upon recently derived radiative heat transfer limits and a unified formalism characterizing heat transport for arbitrary bosonic systems in the linear regime, we propose new bounds on conductive heat transfer. In particular, we demonstrate that our limits are typically far tighter than the Landauer limits per channel and are close to actual transmission eigenvalues by examining a model of phonon conduction in a 1-dimensional chain. Our limits have ramifications for designing molecular junctions to optimize conduction.
We calculate the radiative heat transfer between two identical metallic one-dimensional lamellar gratings. To this aim we present and exploit a modification to the widely-used Fourier modal method, known as adaptive spatial resolution, based on a str etch of the coordinate associated to the periodicity of the grating. We first show that this technique dramatically improves the rate of convergence when calculating the heat flux, allowing to explore smaller separations. We then present a study of heat flux as a function of the grating height, highlighting a remarkable amplification of the exchanged energy, ascribed to the appearance of spoof-plasmon modes, whose behavior is also spectrally investigated. Differently from previous works, our method allows us to explore a range of grating heights extending over several orders of magnitude. By comparing our results to recent studies we find a consistent quantitative disagreement with some previously obtained results going up to 50%. In some cases, this disagreement is explained in terms of an incorrect connection between the reflection operators of the two gratings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا