ﻻ يوجد ملخص باللغة العربية
High resolution spectra of typical wind diagnostics ([OI] 6300 r{A} and other forbidden emission lines) can often be decomposed into multiple components: high-velocity components with blueshifts up to several 100 km/s are usually attributed to fast jets, while narrow (NLVC) and broad (BLVC) low-velocity components are believed to trace slower disc winds. Under the assumption that the line-broadening is dominated by Keplerian rotation, several studies have found that the BLVCs should trace gas launched between 0.05 and 0.5 au and correlations between the properties of BLVCs and NLVCs have been interpreted as evidence for the emission tracing an extended MHD wind and not a photoevaporative wind. We calculated synthetic line profiles obtained from detailed photoionisation calculations of an X-ray photoevaporation model and a simple MHD wind model and analyzed the emission regions of different diagnostic lines and the resulting spectral profiles. The photoevaporation model reproduces most of the observed NLVCs but not the BLVCs or HVCs. The MHD model is able to reproduce all components but produces Keplerian double peaks at average inclinations that are rarely observed. The combination of MHD and photoevaporative winds could solve this problem. Our results suggest that the Gaussian decomposition does not allow for a clear distinction of flux from different wind regions and that the line broadening is often dominated by the velocity gradient in the outflow rather than by Keplerian rotation. We show that observed correlations between BLVC and NLVC do not necessarily imply a common origin in an extended MHD wind.
Most stars form and spend their early life in regions of enhanced stellar density. Therefore the evolution of protoplanetary discs (PPDs) hosted by such stars are subject to the influence of other members of the cluster. Physically, PPDs might be tru
Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. The radiation from the
We estimate the mass loss rates of photoevaporative winds launched from the outer edge of protoplanetary discs impinged by an ambient radiation field. We focus on mild/moderate environments (the number of stars in the group/cluster is N ~ 50), and ex
Photoevaporation due to high-energy stellar photons is thought to be one of the main drivers of protoplanetary disk dispersal. The fully or partially ionized disk surface is expected to produce free-free continuum emission at centimeter (cm) waveleng
We introduce a new stacking method in Keplerian disks that (1) enhances signal-to-noise ratios (S/N) of detected molecular lines and (2) that makes visible otherwise undetectable weak lines. Our technique takes advantage of the Keplerian rotational v