ﻻ يوجد ملخص باللغة العربية
We investigate the dynamical properties of a strongly disordered micropolar lattice made up of cubic block units. This phononic lattice model supports both transverse and rotational degrees of freedom hence its disordered variant posses an interesting problem as it can be used to model physically important systems like beam-like microstructures. Different kinds of single site excitations (momentum or displacement) on the two degrees of freedom are found to lead to different energy transport both superdiffusive and subdiffusive. We show that the energy spreading is facilitated both by the low frequency extended waves and a set of high frequency modes located at the edge of the upper branch of the periodic case for any initial condition. However, the second moment of the energy distribution strongly depends on the initial condition and it is slower than the underlying one dimensional harmonic lattice (with one degree of freedom). Finally, a limiting case of the micropolar lattice is studied where Anderson localization is found to persist and no energy spreading takes place.
We present a theoretical study of extreme events occurring in phononic lattices. In particular, we focus on the formation of rogue or freak waves, which are characterized by their localization in both spatial and temporal domains. We consider two exa
We consider propagation of high-frequency wave packets along a smooth evolving background flow whose evolution is described by a simple-wave type of solutions of hydrodynamic equations. In geometrical optics approximation, the motion of the wave pack
We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels -- primary and control ones -- via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the p
We study solitary wave propagation in 1D granular crystals with Hertz-like interaction potentials. We consider interfaces between media with different exponents in the interaction potential. For an interface with increasing interaction potential expo
We present a dynamically tunable mechanism of wave transmission in 1D helicoidal phononic crystals in a shape similar to DNA structures. These helicoidal architectures allow slanted nonlinear contact among cylin- drical constituents, and the relative