ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection

98   0   0.0 ( 0 )
 نشر من قبل Oliver Rippel
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomaly Detection (AD) in images is a fundamental computer vision problem and refers to identifying images and image substructures that deviate significantly from the norm. Popular AD algorithms commonly try to learn a model of normality from scratch using task specific datasets, but are limited to semi-supervised approaches employing mostly normal data due to the inaccessibility of anomalies on a large scale combined with the ambiguous nature of anomaly appearance. We follow an alternative approach and demonstrate that deep feature representations learned by discriminative models on large natural image datasets are well suited to describe normality and detect even subtle anomalies in a transfer learning setting. Our model of normality is established by fitting a multivariate Gaussian (MVG) to deep feature representations of classification networks trained on ImageNet using normal data only. By subsequently applying the Mahalanobis distance as the anomaly score we outperform the current state of the art on the public MVTec AD dataset, achieving an AUROC value of $95.8 pm 1.2$ (mean $pm$ SEM) over all 15 classes. We further investigate why the learned representations are discriminative to the AD task using Principal Component Analysis. We find that the principal components containing little variance in normal data are the ones crucial for discriminating between normal and anomalous instances. This gives a possible explanation to the often sub-par performance of AD approaches trained from scratch using normal data only. By selectively fitting a MVG to these most relevant components only, we are able to further reduce model complexity while retaining AD performance. We also investigate setting the working point by selecting acceptable False Positive Rate thresholds based on the MVG assumption. Code available at https://github.com/ORippler/gaussian-ad-mvtec

قيم البحث

اقرأ أيضاً

Anomaly detection is critically important for intelligent surveillance systems to detect in a timely manner any malicious activities. Many video anomaly detection approaches using deep learning methods focus on a single camera video stream with a fix ed scenario. These deep learning methods use large-scale training data with large complexity. As a solution, in this paper, we show how to use pre-trained convolutional neural net models to perform feature extraction and context mining, and then use denoising autoencoder with relatively low model complexity to provide efficient and accurate surveillance anomaly detection, which can be useful for the resource-constrained devices such as edge devices of the Internet of Things (IoT). Our anomaly detection model makes decisions based on the high-level features derived from the selected embedded computer vision models such as object classification and object detection. Additionally, we derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method. We use two UCSD datasets to demonstrate that our approach with relatively low model complexity can achieve comparable performance compared to the state-of-the-art approaches.
Deep Learning methods usually require huge amounts of training data to perform at their full potential, and often require expensive manual labeling. Using synthetic images is therefore very attractive to train object detectors, as the labeling comes for free, and several approaches have been proposed to combine synthetic and real images for training. In this paper, we show that a simple trick is sufficient to train very effectively modern object detectors with synthetic images only: We freeze the layers responsible for feature extraction to generic layers pre-trained on real images, and train only the remaining layers with plain OpenGL rendering. Our experiments with very recent deep architectures for object recognition (Faster-RCNN, R-FCN, Mask-RCNN) and image feature extractors (InceptionResnet and Resnet) show this simple approach performs surprisingly well.
79 - Gahye Lee , Seungkyu Lee 2020
Anomaly detection in data analysis is an interesting but still challenging research topic in real world applications. As the complexity of data dimension increases, it requires to understand the semantic contexts in its description for effective anom aly characterization. However, existing anomaly detection methods show limited performances with high dimensional data such as ImageNet. Existing studies have evaluated their performance on low dimensional, clean and well separated data set such as MNIST and CIFAR-10. In this paper, we study anomaly detection with high dimensional and complex normal data. Our observation is that, in general, anomaly data is defined by semantically explainable features which are able to be used in defining semantic sub-clusters of normal data as well. We hypothesize that if there exists reasonably good feature space semantically separating sub-clusters of given normal data, unseen anomaly also can be well distinguished in the space from the normal data. We propose to perform semantic clustering on given normal data and train a classifier to learn the discriminative feature space where anomaly detection is finally performed. Based on our careful and extensive experimental evaluations with MNIST, CIFAR-10, and ImageNet with various combinations of normal and anomaly data, we show that our anomaly detection scheme outperforms state of the art methods especially with high dimensional real world images.
Domain adaptation (DA) mitigates the domain shift problem when transferring knowledge from one annotated domain to another similar but different unlabeled domain. However, existing models often utilize one of the ImageNet models as the backbone witho ut exploring others, and fine-tuning or retraining the backbone ImageNet model is also time-consuming. Moreover, pseudo-labeling has been used to improve the performance in the target domain, while how to generate confident pseudo labels and explicitly align domain distributions has not been well addressed. In this paper, we show how to efficiently opt for the best pre-trained features from seventeen well-known ImageNet models in unsupervised DA problems. In addition, we propose a recurrent pseudo-labeling model using the best pre-trained features (termed PRPL) to improve classification performance. To show the effectiveness of PRPL, we evaluate it on three benchmark datasets, Office+Caltech-10, Office-31, and Office-Home. Extensive experiments show that our model reduces computation time and boosts the mean accuracy to 98.1%, 92.4%, and 81.2%, respectively, substantially outperforming the state of the art.
In recent years, neural network-based anomaly detection methods have attracted considerable attention in the hyperspectral remote sensing domain due to the powerful reconstruction ability compared with traditional methods. However, actual probability distribution statistics hidden in the latent space are not discovered by exploiting the reconstruction error because the probability distribution of anomalies is not explicitly modeled. To address the issue, we propose a novel probability distribution representation detector (PDRD) that explores the intrinsic distribution of both the background and the anomalies in original data for hyperspectral anomaly detection in this paper. First, we represent the hyperspectral data with multivariate Gaussian distributions from a probabilistic perspective. Then, we combine the local statistics with the obtained distributions to leverage the spatial information. Finally, the difference between the corresponding distributions of the test pixel and the average expectation of the pixels in the Chebyshev neighborhood is measured by computing the modified Wasserstein distance to acquire the detection map. We conduct the experiments on four real data sets to evaluate the performance of our proposed method. Experimental results demonstrate the accuracy and efficiency of our proposed method compared to the state-of-the-art detection methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا