ترغب بنشر مسار تعليمي؟ اضغط هنا

Sound Regular Corecursion in coFJ

273   0   0.0 ( 0 )
 نشر من قبل Pietro Barbieri
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of the paper is to provide solid foundations for a programming paradigm natively supporting the creation and manipulation of cyclic data structures. To this end, we describe coFJ, a Java-like calculus where objects can be infinite and methods are equipped with a codefinition (an alternative body). We provide an abstract semantics of the calculus based on the framework of inference systems with corules. In coFJ with this semantics, FJ recursive methods on finite objects can be extended to infinite objects as well, and behave as desired by the programmer, by specifying a codefinition. We also describe an operational semantics which can be directly implemented in a programming language, and prove the soundness of such semantics with respect to the abstract one.



قيم البحث

اقرأ أيضاً

An interactive program verification tool usually requires users to write formal proofs in a theorem prover like Coq and Isabelle, which is an obstacle for most software engineers. In comparison, annotation verifiers can use assertions in source files as hints for program verification but they themselves do not have a formal soundness proof. In this paper, we demonstrate VST-A, a foundationally sound annotation verifier for sequential C programs. On one hand, users can write high order assertion in C programs comments. On the other hand, separation logic proofs will be generated in the backend whose proof rules are formally proved sound w.r.t. CompCerts Clight semantics. Residue proof goals in Coq may be generated if some assertion entailments cannot be verified automatically.
We present a tool, simplify-defun, that transforms the definition of a given function into a simplified definition of a new function, providing a proof checked by ACL2 that the old and new functions are equivalent. When appropriate it also generates termination and guard proofs for the new function. We explain how the tool is engineered so that these proofs will succeed. Examples illustrate its utility, in particular for program transformation in synthesis and verification.
121 - Qiaochu Chen , Xinyu Wang , Xi Ye 2019
In this paper, we propose a multi-modal synthesis technique for automatically constructing regular expressions (regexes) from a combination of examples and natural language. Using multiple modalities is useful in this context because natural language alone is often highly ambiguous, whereas examples in isolation are often not sufficient for conveying user intent. Our proposed technique first parses the English description into a so-called hierarchical sketch that guides our programming-by-example (PBE) engine. Since the hierarchical sketch captures crucial hints, the PBE engine can leverage this information to both prioritize the search as well as make useful deductions for pruning the search space. We have implemented the proposed technique in a tool called Regel and evaluate it on over three hundred regexes. Our evaluation shows that Regel achieves 80% accuracy whereas the NLP-only and PBE-only baselines achieve 43% and 26% respectively. We also compare our proposed PBE engine against an adaptation of AlphaRegex, a state-of-the-art regex synthesis tool, and show that our proposed PBE engine is an order of magnitude faster, even if we adapt the search algorithm of AlphaRegex to leverage the sketch. Finally, we conduct a user study involving 20 participants and show that users are twice as likely to successfully come up with the desired regex using Regel compared to without it.
In order to handle the complexity and heterogeneity of mod- ern instruction set architectures, analysis platforms share a common design, the adoption of hardware-independent intermediate representa- tions. The usage of these platforms to verify syste ms down to binary-level is appealing due to the high degree of automation they provide. How- ever, it introduces the need for trusting the correctness of the translation from binary code to intermediate language. Achieving a high degree of trust is challenging since this transpilation must handle (i) all the side effects of the instructions, (ii) multiple instruction encoding (e.g. ARM Thumb), and (iii) variable instruction length (e.g. Intel). We overcome these problems by formally modeling one of such intermediate languages in the interactive theorem prover HOL4 and by implementing a proof- producing transpiler. This tool translates ARMv8 programs to the in- termediate language and generates a HOL4 proof that demonstrates the correctness of the translation in the form of a simulation theorem. We also show how the transpiler theorems can be used to transfer properties verified on the intermediate language to the binary code.
In this paper we use pre existing language support for type modifiers and object capabilities to enable a system for sound runtime verification of invariants. Our system guarantees that class invariants hold for all objects involved in execution. Inv ariants are specified simply as methods whose execution is statically guaranteed to be deterministic and not access any externally mutable state. We automatically call such invariant methods only when objects are created or the state they refer to may have been mutated. Our design restricts the range of expressible invariants but improves upon the usability and performance of our system compared to prior work. In addition, we soundly support mutation, dynamic dispatch, exceptions, and non determinism, while requiring only a modest amount of annotation. We present a case study showing that our system requires a lower annotation burden compared to Spec#, and performs orders of magnitude less runtime invariant checks compared to the widely used `visible state semantics protocols of D, Eiffel. We also formalise our approach and prove that such pre existing type modifier and object capability support is sufficient to ensure its soundness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا