ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of eccentricity on the gravitational wave searches for binary black holes: High mass case

218   0   0.0 ( 0 )
 نشر من قبل Antoni Ramos Buades
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possible formation of stellar-mass binary black holes through dynamical interactions in dense stellar environments predicts the existence of binaries with non-negligible eccentricity in the frequency band of ground-based gravitational wave detectors; the detection of binary black hole mergers with measurable orbital eccentricity would validate the existence of this formation channel. Waveform templates currently used in the matched-filter gravitational-wave searches of LIGO-Virgo data neglect effects of eccentricity which is expected to reduce their efficiency to detect eccentric binary black holes. Meanwhile, the sensitivity of coherent unmodeled gravitational-wave searches (with minimal assumptions about the signal model) have been shown to be largely unaffected by the presence of even sizable orbital eccentricity. In this paper, we compare the performance of two state-of-the-art search algorithms recently used by LIGO and Virgo to search for binary black holes in the second Observing Run (O2), quantifying their search sensitivity by injecting numerical-relativity simulations of inspiral-merger-ringdown eccentric waveforms into O2 LIGO data. Our results show that the matched-filter search PyCBC performs better than the unmodeled search cWB for the high chirp mass ($>20 M_{odot}$) and low eccentricity region ($e_{30 Hz} < 0.3$) of parameter space. For moderate eccentricities and low chirp mass, on the other hand, the unmodeled search is more sensitive than the modeled search.

قيم البحث

اقرأ أيضاً

Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar $(ell,|m|)=(2,2)$ modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of t
The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have mod estly large spins ($agtrsim 0.4$) and modest mass ratios ($qgtrsim 2$). We demonstrate these disagreements using standard figures of merit and the parameters inferred for recent detections of binary black holes. By comparing to numerical relativity, we confirm these disagreements reflect systematic errors. We provide concrete examples to demonstrate that these systematic errors can significantly impact inferences about astrophysically significant binary parameters. For the immediate future, parameter inference for binary black holes should be performed with multiple models (including numerical relativity), and carefully validated by performing inference under controlled circumstances with similar synthetic events.
The direct measurement of gravitational waves is a powerful tool for surveying the population of black holes across the universe. The first gravitational wave catalog from LIGO has detected black holes as heavy as $sim50~M_odot$, colliding when our U niverse was about half its current age. However, there is yet no unambiguous evidence of black holes in the intermediate-mass range of $10^{2-5}~M_odot$. Recent electromagnetic observations have hinted at the existence of IMBHs in the local universe; however, their masses are poorly constrained. The likely formation mechanisms of IMBHs are also not understood. Here we make the case that multiband gravitational wave astronomy --specifically, joint observations by space- and ground-based gravitational wave detectors-- will be able to survey a broad population of IMBHs at cosmological distances. By utilizing general relativistic simulations of merging black holes and state-of-the-art gravitational waveform models, we classify three distinct population of binaries with IMBHs in the multiband era and discuss what can be observed about each. Our studies show that multiband observations involving the upgraded LIGO detector and the proposed space-mission LISA would detect the inspiral, merger and ringdown of IMBH binaries out to redshift ~2. Assuming that next-generation detectors, Einstein Telescope, and Cosmic Explorer, are operational during LISAs mission lifetime, we should have multiband detections of IMBH binaries out to redshift ~5. To facilitate studies on multiband IMBH sources, here we investigate the multiband detectability of IMBH binaries. We provide analytic relations for the maximum redshift of multiband detectability, as a function of black hole mass, for various detector combinations. Our study paves the way for future work on what can be learned from IMBH observations in the era of multiband gravitational wave astronomy.
109 - G. Mazzolo , F. Salemi , M. Drago 2014
We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binarys parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 $text{M}_{odot}$ and mass ratios between $1/6$ and 1$,$. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.
In models of minicharged dark matter associated with a hidden $U(1)$ symmetry, astrophysical black holes may acquire a dark charge, in such a way that the inspiral dynamics of binary black holes can be formally described by an Einstein-Maxwell theory . Charges enter the gravitational wave signal predominantly through a dipole term, but their effect is known to effectively first post-Newtonian order in the phase, which enables measuring the size of the charge-to-mass ratios, $|q_i/m_i|$, $i = 1,2$, of the individual black holes in a binary. We set up a Bayesian analysis to discover, or constrain, dark charges on binary black holes. After testing our framework in simulations, we apply it to selected binary black hole signals from the second Gravitational Wave Transient Catalog (GWTC-2), namely those with low masses so that most of the signal-to-noise ratio is in the inspiral regime. We find no evidence for charges on the black holes, and place typical 1-$sigma$ bounds on the charge-to-mass ratios of $|q_i/m_i| lesssim 0.2 - 0.3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا