ﻻ يوجد ملخص باللغة العربية
Variational Neural Machine Translation (VNMT) is an attractive framework for modeling the generation of target translations, conditioned not only on the source sentence but also on some latent random variables. The latent variable modeling may introduce useful statistical dependencies that can improve translation accuracy. Unfortunately, learning informative latent variables is non-trivial, as the latent space can be prohibitively large, and the latent codes are prone to be ignored by many translation models at training time. Previous works impose strong assumptions on the distribution of the latent code and limit the choice of the NMT architecture. In this paper, we propose to apply the VNMT framework to the state-of-the-art Transformer and introduce a more flexible approximate posterior based on normalizing flows. We demonstrate the efficacy of our proposal under both in-domain and out-of-domain conditions, significantly outperforming strong baselines.
We explore the performance of latent variable models for conditional text generation in the context of neural machine translation (NMT). Similar to Zhang et al., we augment the encoder-decoder NMT paradigm by introducing a continuous latent variable
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose
Neural machine translation (NMT) generates the next target token given as input the previous ground truth target tokens during training while the previous generated target tokens during inference, which causes discrepancy between training and inferen
Continuously-indexed flows (CIFs) have recently achieved improvements over baseline normalizing flows on a variety of density estimation tasks. CIFs do not possess a closed-form marginal density, and so, unlike standard flows, cannot be plugged in di
In this paper, we propose a novel finetuning algorithm for the recently introduced multi-way, mulitlingual neural machine translate that enables zero-resource machine translation. When used together with novel many-to-one translation strategies, we e