ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyper-Kamiokande

77   0   0.0 ( 0 )
 نشر من قبل Yury Kudenko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yury Kudenko




اسأل ChatGPT حول البحث

A next generation water Cherenkov detector Hyper-Kamiokande to be built in Japan is described. The main goals of this project include a sensitive measurement of CP violation in neutrino oscillations, a search for proton decay and study of solar, atmospherics and astrophysical neutrinos. Key features of the Hyper-Kamiokande detector are described. The main emphasis is put on large photosensors. The recent progress in the development of near neutrino detectors is also presented.

قيم البحث

اقرأ أيضاً

Hyper-Kamiokande is the next generation underground water Cherenkov detector that builds on the highly successful Super-Kamiokande experiment. The detector which has an 8.4~times larger effective volume than its predecessor will be located along the T2K neutrino beamline and utilize an upgraded J-PARC beam with 2.6~times beam power. Hyper-Ks low energy threshold combined with the very large fiducial volume make the detector unique, that is expected to acquire an unprecedented exposure of 3.8~Mton$cdot$year over a period of 20~years of operation. Hyper-Kamiokande combines an extremely diverse science program including nucleon decays, long-baseline neutrino oscillations, atmospheric neutrinos, and neutrinos from astrophysical origins. The scientific scope of this program is highly complementary to liquid-argon detectors for example in sensitivity to nucleon decay channels or supernova detection modes. Hyper-Kamiokande construction has started in early 2020 and the experiment is expected to start operations in 2027. The Hyper-Kamiokande collaboration is presently being formed amongst groups from 19 countries including the United States, whose community has a long history of making significant contributions to the neutrino physics program in Japan. US physicists have played leading roles in the Kamiokande, Super-Kamiokande, EGADS, K2K, and T2K programs.
On the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collabo ration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will detect supernova neutrinos and will measure precisely solar neutrino oscillation.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokan de is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW $times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the $CP$ phase $delta_{CP}$ can be determined to better than 19 degrees for all possible values of $delta_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3,sigma$ ($5,sigma$) for $76%$ ($58%$) of the $delta_{CP}$ parameter space.
A variety of new physics scenarios allow for neutrinos to up-scatter into a heavy neutral lepton state. For a range of couplings and neutrino energies, the heavy neutrino may travel some distance before decaying to visible final states. When both the up-scattering and decay occur within the detector volume, these double bang events produce distinctive phenomenology with very low background. In this work, we first consider the current sensitivity at Super-Kamiokande via the atmospheric neutrino flux, and find current data may already provide new constraints. We then examine projected future sensitivity at DUNE and Hyper-Kamiokande, including both atmospheric and beam flux contributions to double-bang signals.
The radioactive noble gas radon can be a serious background source in the underground particle physics experiments studying processes that deposit energy comparable to its decay products. Low energy solar neutrino measurements at Super-Kamiokande suf fer from these backgrounds and therefore require precise characterization of the radon concentration in the detectors ultra-pure water. For this purpose, we have developed a measurement system consisting of a radon extraction column, a charcoal trap, and a radon detector. In this article we discuss the design, calibration, and performance of the radon extraction column. We also describe the design of the measurement system and evaluate its performance, including its background. Using this system we measured the radon concentration in Super-Kamiokandes water between May 2014 and October 2015. The measured radon concentration in the supply lines of the water circulation system was $1.74pm0.14~mathrm{mBq/m^{3}}$ and in the return line was $9.06pm0.58~mathrm{mBq/m^{3}}$. Water sampled from the center region of the detector itself had a concentration of $<0.23~mathrm{mBq/m^{3}}$ ($95%$ C.L.) and water sampled from the bottom region of the detector had a concentration of $2.63pm0.22~mathrm{mBq/m^{3}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا