ﻻ يوجد ملخص باللغة العربية
Long-lived dark states, in which an experimentally accessible qubit is not in thermal equilibrium with a surrounding spin bath, are pervasive in solid-state systems. We explain the ubiquity of dark states in a large class of inhomogenous central spin models using the proximity to integrable lines with exact dark eigenstates. At numerically accessible sizes, dark states persist as eigenstates at large deviations from integrability, and the qubit retains memory of its initial polarization at long times. Although the eigenstates of the system are chaotic, exhibiting exponential sensitivity to small perturbations, they do not satisfy the eigenstate thermalization hypothesis. Rather, we predict long relaxation times that increase exponentially with system size. We propose that this intermediate chaotic but non-ergodic regime characterizes mesoscopic quantum dot and diamond defect systems, as we see no numerical tendency towards conventional thermalization with a finite relaxation time.
Central spin models describe a variety of quantum systems in which a spin-1/2 qubit interacts with a bath of surrounding spins, as realized in quantum dots and defect centers in diamond. We show that the fully anisotropic central spin Hamiltonian wit
An isotropic anti-ferromagnetic quantum state on a square lattice is characterized by symmetry arguments only. By construction, this quantum state is the result of an underlying valence bond structure without breaking any symmetry in the lattice or s
It is virtually impossible to evaluate the magnetic properties of large anisotropic magnetic molecules numerically exactly due to the huge Hilbert space dimensions as well as due to the absence of symmetries. Here we propose to advance the Finite-Tem
We introduce a simple model of SO($N$) spins with two-site interactions which is amenable to quantum Monte-Carlo studies without a sign problem on non-bipartite lattices. We present numerical results for this model on the two-dimensional triangular l
Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should