ﻻ يوجد ملخص باللغة العربية
We develop a minimal model for textit{pulsar glitches} by introducing a solid-crust potential in the three-dimensional (3D) Gross-Pitaevskii-Poisson equation (GPPE), which we have used earlier to study gravitationally bound Bose-Einstein Condensates (BECs), i.e., bosonic stars. In the absence of the crust potential, we show that, if we rotate such a bosonic star, it is threaded by vortices. We then show, via extensive direct numerical simulations (DNSs), that the interaction of these vortices with the crust potential yields (a) stick-slip dynamics and (b) dynamical glitches. We demonstrate that, if enough momentum is transferred to the crust from the bosonic star, then the vortices are expelled from the star and the crusts angular momentum $J_c$ exhibits features that can be interpreted naturally as glitches. From the time series of $J_c$, we compute the cumulative probability distribution functions (CPDFs) of event sizes, event durations, and waiting times. We show that these CPDFs have signatures of self-organized criticality (SOC), which have been seen in observations on pulsar glitches.
Gaseous Bose-Einstein condensates (BECs) have become an important test bed for studying the dynamics of quantized vortices. In this work we use two-photon Doppler sensitive Bragg scattering to study the rotation of sodium BECs. We analyze the microsc
We develop a scheme to generate number squeezing in a Bose-Einstein condensate by utilizing interference between two hyperfine levels and nonlinear atomic interactions. We describe the scheme using a multimode quantum field model and find agreement w
Pulsar-like compact stars provide us a unique laboratory to explore properties of dense matter at supra-nuclear densities. One of the models for pulsar-like stars is that they are totally composed of strangeons, and in this paper we studied the pulsa
We examine the phase diagram of a Bose-Einstein condensate of atoms, interacting with an attractive pseudopotential, in a quadratic-plus-quartic potential trap rotating at a given rate. Investigating the behavior of the gas as a function of interacti
Pulsar glitches are traditionally viewed as a manifestation of vortex dynamics associated with a neutron superfluid reservoir confined to the inner crust of the star. In this Letter we show that the non-dissipative entrainment coupling between the ne