ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of entangling protocols in ABC-type spin chains

56   0   0.0 ( 0 )
 نشر من قبل Marta Estarellas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution we consider an advantageous building block with potential for various quantum applications: a device based on coupled spins capable of generating and sharing out an entangled pair of qubits. Our model device is a dimerised spin chain with three weakly coupled embedded sites (defects). Three different entangling protocols were proposed for this chain in [1] and [2], one producing a Cluster state and two generating a Bell state, depending on the initial state injection. Here we compare the robustness of such protocols as quantum entangling gates against different types of fabrication (static energy fluctuations) and operation (timing injection delays) errors.

قيم البحث

اقرأ أيضاً

Although a complete picture of the full evolution of complex quantum systems would certainly be the most desirable goal, for particular Quantum Information Processing schemes such an analysis is not necessary. When quantum correlations between only s pecific elements of a many-body system are required for the performance of a protocol, a more distinguished and specialised investigation is helpful. Here, we provide a striking example with the achievement of perfect state transfer in a spin chain without state initialisation, whose realisation has been shown to be possible in virtue of the correlations set between the first and last spin of the transmission-chain.
The power of a quantum circuit is determined through the number of two-qubit entangling gates that can be performed within the coherence time of the system. In the absence of parallel quantum gate operations, this would make the quantum simulators li mited to shallow circuits. Here, we propose a protocol to parallelize the implementation of two-qubit entangling gates between multiple users which are spatially separated, and use a commonly shared spin chain data-bus. Our protocol works through inducing effective interaction between each pair of qubits without disturbing the others, therefore, it increases the rate of gate operations without creating crosstalk. This is achieved by tuning the Hamiltonian parameters appropriately, described in the form of two different strategies. The tuning of the parameters makes different bilocalized eigenstates responsible for the realization of the entangling gates between different pairs of distant qubits. Remarkably, the performance of our protocol is robust against increasing the length of the data-bus and the number of users. Moreover, we show that this protocol can tolerate various types of disorders and is applicable in the context of superconductor-based systems. The proposed protocol can serve for realizing two-way quantum communication.
85 - C.Y.Hu , W.J.Munro , J.L.OBrien 2009
Semiconductor quantum dots (known as artificial atoms) hold great promise for solid-state quantum networks and quantum computers. To realize a quantum network, it is crucial to achieve light-matter entanglement and coherent quantum-state transfer bet ween light and matter. Here we present a robust photon-spin entangling gate with high fidelity and high efficiency (up to 50 percent) using a charged quantum dot in a double-sided microcavity. This gate is based on giant circular birefringence induced by a single electron spin, and functions as an optical circular polariser which allows only one circularly-polarized component of light to be transmitted depending on the electron spin states. We show this gate can be used for single-shot quantum non-demolition measurement of a single electron spin, and can work as an entanglement filter to make a photon-spin entangler, spin entangler and photon entangler as well as a photon-spin quantum interface. This work allows us to make all building blocks for solid-state quantum networks with single photons and quantum-dot spins.
We put forward reverse engineering protocols to shape in time the components of the magnetic field to manipulate a single spin, two independent spins with different gyromagnetic factors, and two interacting spins in short amount of times. We also use these techniques to setup protocols robust against the exact knowledge of the gyromagnetic factors for the one spin problem, or to generate entangled states for two or more spins coupled by dipole-dipole interactions.
Periodically driven Floquet quantum systems provide a promising platform to investigate novel physics out of equilibrium. Unfortunately, the drive generically heats up the system to a featureless infinite temperature state. For large driving frequenc y, the heat absorption rate is predicted to be exponentially small, giving rise to a long-lived prethermal regime which exhibits all the intriguing properties of Floquet systems. Here we experimentally observe Floquet prethermalization using nuclear magnetic resonance techniques. We first show the relaxation of a far-from-equilibrium initial state to a long-lived prethermal state, well described by the time-independent prethermal Hamiltonian. By measuring the autocorrelation of this prethermal Hamiltonian we can further experimentally confirm the predicted exponentially slow heating rate. More strikingly, we find that in the timescale when the effective Hamiltonian picture breaks down, the Floquet system still possesses other quasi-conservation laws. Our results demonstrate that it is possible to realize robust Floquet engineering, thus enabling the experimental observation of non-trivial Floquet phases of matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا