ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope

141   0   0.0 ( 0 )
 نشر من قبل Benjamin Jones
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube neutrino telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric $ u_mu$ and $bar{ u}_mu$ events we construct confidence intervals in two analysis spaces: $sin^2 (2theta_{24})$ vs. $Delta m^2_{41}$ under the conservative assumption $theta_{34}=0$; and $sin^2(2theta_{24})$ vs. $sin^2 (2theta_{34})$ given sufficiently large $Delta m^2_{41}$ that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p-value of 8% in the first analysis space and 19% in the second.



قيم البحث

اقرأ أيضاً

The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305,735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-e nhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01,eV$^2$ and 100,eV$^2$. The best-fit point is found to be at $sin^2(2theta_{24})=0.10$ and $Delta m_{41}^2 = 4.5{rm eV}^2$, which is consistent with the no sterile neutrino hypothesis with a p-value of 8.0%.
The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above $sim 1,mathrm{GeV}$, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present rthe development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for Normal Ordering with a $p$-value of $p_mathrm{IO} = 15.3%$ and $mathrm{CL}_mathrm{s}=53.3%$ for the Inverted Ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of $delta_mathrm{CP}$ and obtained from energies $E_ u gtrsim 5,mathrm{GeV}$, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutri nos. No evidence for anomalous $ u_mu$ or $bar{ u}_mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $mathrm{sin}^2 2theta_{24} leq$ 0.02 at $Delta m^2 sim$ 0.3 $mathrm{eV}^2$ at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best fit value of $|$U$_{e4}|^2$.
We study the capabilities of IceCube to search for sterile neutrinos with masses above 10 eV by analyzing its $ u_mu$ disappearance atmospheric neutrino sample. We find that IceCube is not only sensitive to the mixing of sterile neutrinos to muon neu trinos, but also to the more elusive mixing with tau neutrinos through matter effects. The currently released 1-year data shows a mild (around 2$sigma$) preference for non-zero sterile mixing, which overlaps with the favoured region for the sterile neutrino interpretation of the ANITA upward shower. Although the null results from CHORUS and NOMAD on $ u_mu$ to $ u_tau$ oscillations in vacuum disfavour the hint from the IceCube 1-year data, the relevant oscillation channel and underlying physics are different. At the $99%$ C.L. an upper bound is obtained instead that improves over the present Super-Kamiokande and DeepCore constraints in some parts of the parameter space. We also investigate the physics reach of the roughly 8 years of data that is already on tape as well as a forecast of 20 years data to probe the present hint or improve upon current constraints.
We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos instead of tau neutrinos at the atmospheric mass splitting. When performing both these searches we assume that the sterile mass splitting is large, allowing $sin^2(Delta m^2 L/4E)$ to be approximated as $0.5$, and we assume that there is no mixing between electron neutrinos and sterile neutrinos ($|U_{e4}|^2 = 0$). No evidence of sterile oscillations is seen and we limit $|U_{mu4}|^2$ to less than 0.041 and $|U_{tau4}|^2$ to less than 0.18 for $Delta m^2 > 0.8$ eV$^2$ at the 90% C.L. in a 3+1 framework. The approximations that can be made with atmospheric neutrinos allow these limits to be easily applied to 3+N models, and we provide our results in a generic format to allow comparisons with other sterile neutrino models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا