ﻻ يوجد ملخص باللغة العربية
We study the magneto-conductance of a $1.4~mathrm{mu m}$-wide quantum dot in the fractional quantum Hall regime. For a filling factor $approx 2/3$ and $gtrsim 1/3$ in the quantum dot the observed Coulomb resonances show a periodic modulation in magnetic field. This indicates a non-trivial reconstruction of the 2/3 fractional quantum Hall state in the quantum dot. We present a model for the charge stability diagram of the system assuming two compressible regions separated by an incompressible stripe of filling factor $2/3$ and $1/3$, respectively. From the dependence of the magnetic field period on total magnetic field we construct the zero-field charge density distribution in the quantum dot. The tunneling between the two compressible regions exhibits fractional Coulomb blockade. For both filling factor regions, we extract a fractional charge $e^*/e = 0.32 pm 0.03$ by comparing to measurements at filling factor 2. With their close relation to quantum Hall Fabry-P{e}rot interferometers, our investigations on quantum dots in the fractional quantum Hall regime extend and complement interference experiments investigating the nature of anyonic fractional quantum Hall quasiparticles.
A magnet with precessing magnetization pumps a spin current into adjacent leads. As a special case of this spin pumping, a precessing macrospin (magnetization) can assist electrons in tunneling. In small systems, however, the Coulomb blockade effect
We present an explanation for the anomalous behavior in tunneling conductance and noise through a point contact between edge states in the Jain series $ u=p/(2np+1)$, for extremely weak-backscattering and low temperatures [Y.C. Chung, M. Heiblum, and
We study charge transport through a floating mesoscopic superconductor coupled to counterpropagating fractional quantum Hall edges at filling fraction $ u=2/3$. We consider a superconducting island with finite charging energy and investigate its effe
A tunable directional coupler based on Coulomb Blockade effect is presented. Two electron waveguides are coupled by a quantum dot to an injector waveguide. Electron confinement is obtained by surface Schottky gates on single GaAs/AlGaAs heterojunctio
We consider a tunnel junction formed between a fixed electrode and an oscillating one. Accumulation of the charge on the junction capacitor induces a force on the nano-mechanical oscillator. The junction is voltage biased and connected in series with