ﻻ يوجد ملخص باللغة العربية
Perceptual Extreme Super-Resolution for single image is extremely difficult, because the texture details of different images vary greatly. To tackle this difficulty, we develop a super resolution network with receptive field block based on Enhanced SRGAN. We call our network RFB-ESRGAN. The key contributions are listed as follows. First, for the purpose of extracting multi-scale information and enhance the feature discriminability, we applied receptive field block (RFB) to super resolution. RFB has achieved competitive results in object detection and classification. Second, instead of using large convolution kernels in multi-scale receptive field block, several small kernels are used in RFB, which makes us be able to extract detailed features and reduce the computation complexity. Third, we alternately use different upsampling methods in the upsampling stage to reduce the high computation complexity and still remain satisfactory performance. Fourth, we use the ensemble of 10 models of different iteration to improve the robustness of model and reduce the noise introduced by each individual model. Our experimental results show the superior performance of RFB-ESRGAN. According to the preliminary results of NTIRE 2020 Perceptual Extreme Super-Resolution Challenge, our solution ranks first among all the participants.
This paper reviews the NTIRE 2020 challenge on perceptual extreme super-resolution with focus on proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor 16 based on a set of prior examples of
This paper proposes an explicit way to optimize the super-resolution network for generating visually pleasing images. The previous approaches use several loss functions which is hard to interpret and has the implicit relationships to improve the perc
Recently, the single image super-resolution (SISR) approaches with deep and complex convolutional neural network structures have achieved promising performance. However, those methods improve the performance at the cost of higher memory consumption,
The video super-resolution (VSR) task aims to restore a high-resolution (HR) video frame by using its corresponding low-resolution (LR) frame and multiple neighboring frames. At present, many deep learning-based VSR methods rely on optical flow to pe
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the recons