ﻻ يوجد ملخص باللغة العربية
Beam-driven plasma-wakefield acceleration based on external injection has the potential to significantly reduce the size of future accelerators. Stability and quality of the acceleration process substantially depends on the incoming bunch parameters. Precise control of the current profile is essential for optimising energy-transfer efficiency and preserving energy spread. At the FLASHForward facility, driver--witness bunch pairs of adjustable bunch length and separation are generated by a set of collimators in a dispersive section, which enables fs-level control of the longitudinal bunch profile. The design of the collimator apparatus and its commissioning is presented.
The FLASHForward project at DESY is a pioneering plasma-wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free-electron lase
KEK-ATF is studying the low-emittance multi-bunch electron beam for the future linear collider. In ATF, thermionic gun is used to generate 20 bunches electron beam with the bunch spacing of 2.8 ns. Due to a distortion of the gun emission and the beam
Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to giga-electronvolt (GeV) energies in centimetre-scale distances. This allows the realization of compact accelerators having emerging
Realization of a short bunch beam by manipulating the longitudinal phase space distribution with a finite longitudinal dispersion following an off-crest accelera- tion is a widely used technique. The technique was applied in a compact test accelerato
This paper presents history and evolution of the intra-bunch feedback system for circular accelerators. This pro-ject has been presented by John D. Fox (SLAC/Stanford Un.) at the IPAC2010 held in Kyoto. The idea of the pro-posal is to build a flexibl