ﻻ يوجد ملخص باللغة العربية
We introduce the notion of right pre-resolutions (quasi-resolutions) for noncommutative isolated singularities, which is a weaker version of quasi-resolutions introduced by Qin-Wang-Zhang. We prove that right quasi-resolutions for noetherian bounded below and locally finite graded algebra with right injective dimension 2 are always Morita equivalent. When we restrict to noncommutative quadric hypersurfaces, we prove that a noncommutative quadric hypersurface, which is a noncommutative isolated singularity, always admits a right pre-resolution. Besides, we provide a method to verify whether a noncommutative quadric hypersurface is an isolated singularity. An example of noncommutative quadric hypersurfaces with detailed computations of indecomposable maximal Cohen-Macaulay modules and right pre-resolutions is included as well.
Let $Gsubseteq GL(n)$ be a finite group without pseudo-reflections. We present an algorithm to compute and verify a candidate for the Cox ring of a resolution $Xrightarrow mathbb{C}^n/G$, which is based just on the geometry of the singularity $mathbb
We prove $L_{infty}$-formality for the higher cyclic Hochschild complex $chH$ over free associative algebra or path algebra of a quiver. The $chH$ complex is introduced as an appropriate tool for the definition of pre-Calabi-Yau structure. We show th
In this note, we correct an error in arXiv:1702.04949 by adding an additional assumption of join completeness. We demonstrate with examples why this assumption is necessary, and discuss how join completeness relates to other properties of a skew lattice.
These are significantly expanded lecture notes for the authors minicourse at MSRI in June 2012, as published in the MSRI lecture note series, with some minor additional corrections. In these notes, we give an example-motivated review of the deformati
We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution and Bardzells resolution; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $