ترغب بنشر مسار تعليمي؟ اضغط هنا

Storage Ring Probes of Dark Matter and Dark Energy

132   0   0.0 ( 0 )
 نشر من قبل Peter Graham
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that proton storage ring experiments designed to search for proton electric dipole moments can also be used to look for the nearly dc spin precession induced by dark energy and ultra-light dark matter. These experiments are sensitive to both axion-like and vector fields. Current technology permits probes of these phenomena up to three orders of magnitude beyond astrophysical limits. The relativistic boost of the protons in these rings allows this scheme to have sensitivities comparable to atomic co-magnetometer experiments that can also probe similar phenomena. These complementary approaches can be used to extract the micro-physics of a signal, allowing us to distinguish between pseudo-scalar, magnetic and electric dipole moment interactions.

قيم البحث

اقرأ أيضاً

66 - Maxim Yu. Khlopov 2018
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and to consist of new stable particles. However if composite dark matter contains stable electrically charged leptons an d quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. In such models the excessive negatively double charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals to experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter. (abridged)
Kination dominated quintessence models of dark energy have the intriguing feature that the relic abundance of thermal cold dark matter can be significantly enhanced compared to the predictions from standard cosmology. Previous treatments of such mode ls do not include a realistic embedding of inflationary initial conditions. We remedy this situation by constructing a viable inflationary model in which the inflaton and quintessence field are the same scalar degree of freedom. Kination domination is achieved after inflation through a strong push or kick of the inflaton, and sufficient reheating can be achieved depending on model parameters. This allows us to explore both model-dependent and model-independent cosmological predictions of this scenario. We find that measurements of the B-mode CMB polarization can rule out this class of scenarios almost model independently. We also discuss other experimentally accessible signatures for this class of models.
We propose using the storage ring EDM method to search for the axion dark matter induced EDM oscillation in nucleons. The method uses a combination of B and E-fields to produce a resonance between the $g-2$ spin precession frequency and the backgroun d axion field oscillation to greatly enhance sensitivity to it. An axion frequency range from $10^{-9}$ Hz to 100 MHz can in principle be scanned with high sensitivity, corresponding to an $f_a$ range of $10^{13} $ GeV $leq f_a leq 10^{30}$ GeV, the breakdown scale of the global symmetry generating the axion or axion like particles (ALPs).
An unexpected explanation for neutrino mass, Dark Matter (DM) and Dark Energy (DE) from genuine Quantum Chromodynamics (QCD) of the Standard Model (SM) is proposed here, while the strong CP problem is resolved without any need to account for fundamen tal axions. We suggest that the neutrino sector can be in a double phase in the Universe: i) relativistic neutrinos, belonging to the SM; ii) non-relativistic condensate of Majorana neutrinos. The condensate of neutrinos can provide an attractive alternative candidate for the DM, being in a cold coherent state. We will explain how neutrinos, combining into Cooper pairs, can form collective low-energy degrees of freedom, hence providing a strongly motivated candidate for the QCD (composite) axion.
We study a $Z_2 times Z_2$ symmetric 3-Higgs Doublet Model (3HDM), wherein two of the doublets are inert and one is active (thus denoted in literature as I(2+1)HDM), yielding a two-component Dark Matter (DM) sector. The two DM candidates emerge as th e lightest scalar component of a different inert doublet, each with a different odd discrete parity, and cooperate to achieve the correct relic density. When a sufficient mass difference exists between the two DM candidates, it is possible to test the presence of both in present and/or forthcoming facilities, as the corresponding masses are typically at the electroweak scale. Specifically, the light DM component can be probed by the nuclear recoil energy in direct detection experiments while the heavy DM component appears through the photon flux in indirect detection experiments. In fact, the DM mass sensitivity that the two experimental set-ups can achieve should be adequate to establish the presence of two different DM signals. This result has been obtained in the presence of a thorough theoretical analysis of the stability conditions of the vacuum structure emerging from our I(2+1)HDM construct, ensuring that the model configurations adopted are physical, and of up-to-date constraints coming from data collected by both space and ground experiments, ensuring that the coupling and mass spectra investigated are viable phenomenologically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا