ﻻ يوجد ملخص باللغة العربية
Flat TiO$_2$ layers are deposited by magnetron sputtering on Ti/Si wafers. The TiO$_2$ surfaces are then sputter-coated with thin Au films of a nominal thickness of 0.5-10 nm that are converted by solid-state dewetting into Au nanoparticles of tuneable size and spacing; the Au nanoparticle size can be tuned over a broad range, i.e. ca. 3-200 nm. The Au-decorated TiO$_2$ surfaces enable plasmonic photo-electrochemical water splitting under visible light illumination (450-750 nm). The water splitting performance reaches a maximum for TiO$_2$ layers decorated with ~ 30 nm-sized Au particles. As expected, optical absorption measurements show a red shift of the plasmonic extinction band with increasing the Au nanoparticle size. However, the plasmonic photocurrent is found to peak at ~ 600 nm regardless of the size of the Au nanoparticles, i.e. the plasmonic photocurrent band position is size-independent. Such a remarkable observation can be ascribed to a hot electron injection cut-off effect.
Gold-decorated TiO$_2$ nanotubes were used for the photocatalytic abatement of Hg(II) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect t
Au nanoparticles at the TiO$_2$ surface can enhance the photocatalytic H$_2$ generation performances owing to their electron transfer co-catalytic ability. Key to maximize the co-catalytic effect is a fine control over Au nanoparticle size and placem
Increasing energy demands of modern society requires deep understanding of the properties of energy storage materials as well as their performance tuning. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple elect
In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation (HPH) and
Amorphous oxide thin films play a fundamental role in state-of-the art interferometry experiments, such as gravitational wave detectors where these films compose the high reflectance mirrors of end and input masses. The sensitivity of these detectors