ﻻ يوجد ملخص باللغة العربية
To investigate the use of saliency-map analysis to aid in searches for transient signals, such as fast radio bursts and individual pulses from radio pulsars. We aim to demonstrate that saliency maps provide the means to understand predictions from machine learning algorithms and can be implemented in piplines used to search for transient events. We have implemented a new deep learning methodology to predict whether or not any segment of the data contains a transient event. The algorithm has been trained using real and simulated data sets. We demonstrate that the algorithm is able to identify such events. The output results are visually analysed via the use of saliency maps. We find that saliency maps can produce an enhanced image of any transient feature without the need for de-dispersion or removal of radio frequency interference. Such maps can be used to understand which features in the image were used in making the machine learning decision and to visualise the transient event. Even though the algorithm reported here was developed to demonstrate saliency-map analysis, we have detected, in archival data, a single burst event with dispersion measure of $41$,cm$^{-3}$pc that is not associated with any currently known pulsar.
Although IceCube has discovered a diffuse astrophysical neutrino flux, the underlying sources of these neutrinos remain unknown. Transient astrophysical objects, such as fast radio bursts (FRBs), could explain a large percentage of the measured flux.
Fast radio bursts are a new class of transient radio phenomena currently detected as millisecond radio pulses with very high dispersion measures. As new radio surveys begin searching for FRBs a large population is expected to be detected in real-time
Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin (Petroff et al. 2019; Cordes & Chatterjee 2019). Their high luminosities and short durations require extreme energy densities, like those found in the vicinity of neu
The aim of this white paper is to discuss the observing strategies for the LSST Wide-Fast-Deep that would improve the study of blazars (emission variability, census, environment) and Fast Radio Bursts (FRBs). For blazars, these include the adoption o
We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsar