ترغب بنشر مسار تعليمي؟ اضغط هنا

Applying saliency-map analysis in searches for pulsars and fast radio bursts

77   0   0.0 ( 0 )
 نشر من قبل Songbo Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To investigate the use of saliency-map analysis to aid in searches for transient signals, such as fast radio bursts and individual pulses from radio pulsars. We aim to demonstrate that saliency maps provide the means to understand predictions from machine learning algorithms and can be implemented in piplines used to search for transient events. We have implemented a new deep learning methodology to predict whether or not any segment of the data contains a transient event. The algorithm has been trained using real and simulated data sets. We demonstrate that the algorithm is able to identify such events. The output results are visually analysed via the use of saliency maps. We find that saliency maps can produce an enhanced image of any transient feature without the need for de-dispersion or removal of radio frequency interference. Such maps can be used to understand which features in the image were used in making the machine learning decision and to visualise the transient event. Even though the algorithm reported here was developed to demonstrate saliency-map analysis, we have detected, in archival data, a single burst event with dispersion measure of $41$,cm$^{-3}$pc that is not associated with any currently known pulsar.



قيم البحث

اقرأ أيضاً

160 - Ali Kheirandish , Alex Pizzuto , 2019
Although IceCube has discovered a diffuse astrophysical neutrino flux, the underlying sources of these neutrinos remain unknown. Transient astrophysical objects, such as fast radio bursts (FRBs), could explain a large percentage of the measured flux. We present the analysis techniques of IceCube searches for MeV to TeV neutrinos from FRBs. As no significant correlation between IceCube neutrinos and FRBs has been found, we present the first limit on MeV neutrino emission from FRBs and the most constraining limits for neutrinos with GeV to TeV energies. We also describe the prospects for future IceCube neutrino searches coinciding with FRB detections from next generation radio interferometers.
Fast radio bursts are a new class of transient radio phenomena currently detected as millisecond radio pulses with very high dispersion measures. As new radio surveys begin searching for FRBs a large population is expected to be detected in real-time , triggering a range of multi-wavelength and multi-messenger telescopes to search for repeating bursts and/or associated emission. Here we propose a method for disseminating FRB triggers using Virtual Observatory Events (VOEvents). This format was developed and is used successfully for transient alerts across the electromagnetic spectrum and for multi-messenger signals such as gravitational waves. In this paper we outline a proposed VOEvent standard for FRBs that includes the essential parameters of the event and where these parameters should be specified within the structure of the event. An additional advantage to the use of VOEvents for FRBs is that the events can automatically be ingested into the FRB Catalogue (FRBCAT) enabling real-time updates for public use. We welcome feedback from the community on the proposed standard outlined below and encourage those interested to join the nascent working group forming around this topic.
Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin (Petroff et al. 2019; Cordes & Chatterjee 2019). Their high luminosities and short durations require extreme energy densities, like those found in the vicinity of neu tron stars and black holes. Studying the burst intensities and polarimetric properties on a wide range of timescales, from milliseconds down to nanoseconds, is key to understanding the emission mechanism. However, high-time-resolution studies of FRBs are limited by their unpredictable activity levels, available instrumentation and temporal broadening in the intervening ionised medium. Here we show that the repeating FRB 20200120E (Bhardwaj et al. 2021) can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3x10$^{41}$ K (excluding relativistic effects), comparable to nano-shots from the Crab pulsar. Comparing both the range of timescales and luminosities, we find that FRB 20200120E bridges the gap between known Galactic young pulsars and magnetars, and the much more distant extragalactic FRBs. This suggests a common emission mechanism spanning many orders of magnitude in timescale and luminosity. While the burst timescales and luminosities can be explained by magnetic reconnection in the vicinity of an isolated, young, highly magnetised neutron star, the localisation of FRB 20200120E to a globular cluster (Kirsten et al. submitted) also opens the possibility of magnetic reconnection in an older binary system featuring compact stars or a black hole.
The aim of this white paper is to discuss the observing strategies for the LSST Wide-Fast-Deep that would improve the study of blazars (emission variability, census, environment) and Fast Radio Bursts (FRBs). For blazars, these include the adoption o f: i) a reference filter to allow reconstruction of a well-sampled light curve not affected by colour changes effects; ii) two snapshots/visit with different exposure times to avoid saturation during flaring states; iii) a rolling cadence to get better-sampled light curves at least in some time intervals. We also address the potential importance of Target of Opportunity (ToO) observations of blazar neutrino sources, and the advantages of a Minisurvey with a star trail cadence (see white paper by David Thomas et al.) for both the blazar science and the detection of possible very fast optical counterparts of FRBs.
We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsar s and fast radio bursts. We report on the observational setup, data analysis, multi-wavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR~J1306$-$40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR~J1421$-$4407 is another binary millisecond pulsar; its orbital period is $30.7$ days. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of $10^{-5}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا