ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooperative Ru(4d)-Ho(4f) magnetic orderings and phase coexistence in the 6H-perovskite multiferroic Ba3HoRu2O9

86   0   0.0 ( 0 )
 نشر من قبل Tathamay Basu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report cooperative magnetic orderings in a 6H-perovskite multiferroic system, Ba3HoRu2O9, via comprehensive neutron powder diffraction measurements. This system undergoes long-range antiferromagnetic ordering at TN1 ~ 50 K with a propagation wave vector of K1 = (0.5 0 0), a transition temperature much higher than the previously reported one at ~10 K (TN2). Both Ru and Ho-moments order simultaneously below TN1, followed by spin-reorientations at lower temperatures, demonstrating strong Ru(4d)-Ho(4f) magnetic correlation. Below TN1 another magnetic phase with a propagation wave vector K2 = (0.25 0.25 0) emerges and coexists with the one associated with K1, which is rarely observed and suggests complex magnetism due to phase competition in the magnetic ground state. We argue that the exchange-striction arising from the up-up-down-down spin structure associated with K2-wave vector below TN2 may be responsible for the small ferroelectric polarization reported previously in this compound.

قيم البحث

اقرأ أيضاً

93 - D. Meier , H. Ryll , K. Kiefer 2012
The complex interplay between the 3d and 4f moments in hexagonal ErMnO3 is investigated by magnetization, optical second harmonic generation, and neutron-diffraction measurements. We revise the phase diagram and provide a microscopic model for the em ergent spin structures with a special focus on the intermediary phase transitions. Our measurements reveal that the 3d exchange between Mn^{3+} ions dominates the magnetic symmetry at 10 K < T < T_N with Mn^3+ order according to the Gamma_4 representation triggering 4f ordering according to the same representation on the Er^{3+}(4b) site. Below 10 K the magnetic order is governed by 4f exchange interactions of Er^{3+} ions on the 2a site. The magnetic Er^{3+}(2a) order according to the representation Gamma_2 induces a magnetic reorientation (Gamma_4 --> Gamma_2) at the Er^{3+}(4b) and the Mn^{3+} sites. Our findings highlight the fundamentally different roles the Mn^{3+}, R^{3+}(2a), and R^{3+}(4b) magnetism play in establishing the magnetic phase diagram of the hexagonal RMnO3 system.
Anisotropic multiferroic properties of SrMnGe2O6 pyroxene single crystals were systematically investigated by means of magnetization, heat capacity, pyroelectric current measurement and elastic and inelastic neutron scattering experiments. Single cry stal neutron diffraction allows us to unambiguously reveal the presence of two incommensurate magnetic orderings: a non-polar amplitude-modulated collinear sinusoidal magnetic structure emerges at TN1=4.36(2)K followed by a polar elliptical cycloidal spin structure below TN2=4.05(2)K. Pyroelectric current measurements on single crystal confirm the appearance of a spontaneous polarization within the (ac) plane below TN2 associated with the latter magnetic symmetry through extended Dzyaloshinsky-Moriya mechanism. The magnetic phase diagram was calculated considering the three isotropic exchange couplings relevant in this system. The magnetic excitations spectra of SrMnGe2O6 measured by inelastic neutron scattering were successfully modeled using a set of exchange interactions consistent with this phase diagram.
The anomalous thermal expansion in a layered 3$d$-5$d$ based triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$ is investigated using high resolution synchrotron diffraction. Below the magneto-structural transition at 107,K, the onset of antiferroma gnetic order is associated with a monoclinic distortion of the hexagonal structure. Deeper within the magnetically ordered state, a part of the monoclinic phase distorts even further, and both these structural phases co-exist down to the lowest measured temperatures. We observe negative thermal expansion in this phase co-existence regime, which appears to be intimately connected to the temperature driven relative fractions of these monoclinic phases. The significant NTE observed in this system could be driven by magnetic exchange striction, and is of relevance to a number of systems with pronounced spin orbit interactions.
92 - F. Yen , C. dela Cruz , B. Lorenz 2007
The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fi elds than previously assumed. Magnetic irreversibility indicating the presence of a spontaneous magnetic moment is found near 50 K for R=Er, Yb, and Tm. At very low temperatures and low magnetic fields the phase boundary defined by the ordering of the rare earth moments is resolved. The sizable dielectric anomalies observed along all phase boundaries are evidence for strong spin-lattice coupling in the hexagonal RMnO3. In HoMnO3 the strong magnetoelastic distortions are investigated in more detail via magnetostriction experiments up to 14 Tesla. The results are discussed based on existing data on magnetic symmetries and the interactions between the Mn-spins, the rare earth moments, and the lattice.
We report a comprehensive investigation of Ln2NiIrO6 (Ln = La, Pr, Nd) using thermodynamic and transport properties, neutron powder diffraction, resonant inelastic x-ray scattering, and density functional theory (DFT) calculations to investigate the role of A-site cations on the magnetic interactions in this family of hybrid 3d-5d-4f compositions. Magnetic structure determination using neutron diffraction reveals antiferromagnetism for La2NiIrO6, a collinear ferrimagnetic Ni/Ir state that is driven to long range antiferromagnetism upon the onset of Nd ordering in Nd2NiIrO6, and a non-collinear ferrimagnetic Ni/Ir sublattice interpenetrated by a ferromagnetic Pr lattice for Pr2NiIrO6. For Pr2NiIrO6 heat capacity results reveal the presence of two independent magnetic sublattices and transport resistivity indicates insulating behavior and a conduction pathway that is thermally mediated. First principles DFT calculation elucidates the existence of the two independent magnetic sublattices within Pr2NiIrO6 and offers insight into the behavior in La2NiIrO6 and Nd2NiIrO6. Resonant inelastic x-ray scattering is consistent with spin-orbit coupling splitting the t2g manifold of octahedral Ir4+ into a Jeff = 1/2 and Jeff = 3/2 state for all members of the series considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا