ﻻ يوجد ملخص باللغة العربية
We propose a robust localization of the highly-excited Rydberg atoms, interacting with doughnut-shaped optical vortices. Compared with the earlier standing-wave (SW)-based localization methods, a vortex beam can provide an ultrahigh-precision two-dimensional localization solely in the zero-intensity center, within a confined excitation region down to the nanometer scale. We show that the presence of the Rydberg-Rydberg interaction permits counter-intuitively much stronger confinement towards a high spatial resolution when it is partially compensated by a suitable detuning. In addition, applying an auxiliary SW modulation to the two-photon detuning allows a three-dimensional confinement of Rydberg atoms. In this case, the vortex field provides a transverse confinement while the SW modulation of the two-photon detuning localizes the Rydberg atoms longitudinally. To develop a new subwavelength localization technique, our results pave one-step closer to reduce excitation volumes to the level of a few nanometers, representing a feasible implementation for the future experimental applications.
We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected $sqrt{N}$ Rabi frequency enhancement to within 4
We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon in
A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium R
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l
State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, measured as a quantum phase accumulated in a given time interval. Optical-lattice clocks (OLCs) now operate at or near the standard