ﻻ يوجد ملخص باللغة العربية
The SARS-CoV-2 virus is primarily transmitted through virus-laden fluid particles ejected from the mouth of infected people. Face covers can mitigate the risk of virus transmission but their outward effectiveness is not fully ascertained. Objective: by using a background oriented schlieren technique, we aim to investigate the air flow ejected by a person while quietly and heavily breathing, while coughing, and with different face covers. Results: we found that all face covers without an outlet valve reduce the front flow through by at least 63% and perhaps as high as 86% if the unfiltered cough jet distance was resolved to the anticipated maximum distance of 2-3 m. However, surgical and handmade masks, and face shields, generate significant leakage jets that may present major hazards. Conclusions: the effectiveness of the masks should mostly be considered based on the generation of secondary jets rather than on the ability to mitigate the front throughflow.
A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [Phys. Plasmas 19, 024503 (2012)]. In the present paper the robustness of the dynamic instability mitigation mechanism is discussed further. The results pre
In the COVID-19 pandemic, among the more controversial issues is the use of face coverings. To address this we show that the underlying physics ensures particles with diameters & 1 $mu$m are efficiently filtered out by a simple cotton or surgical mas
To mitigate the SARS-CoV-2 pandemic, officials have employed social distancing and stay-at-home measures, with increased attention to room ventilation emerging only more recently. Effective distancing practices for open spaces can be ineffective for
Tracking and characterizing the blood uptake process within solid pancreatic tumors and the subsequent spatio-temporal distribution of red blood cells are critical to the clinical diagnosis of the cancer. This systematic computational study of physic
Passive filtering is a common strategy used to reduce airborne disease transmission and particulate contaminants in buildings and individual covers. The engineering of high-performance filters with relatively low flow resistance but high virus- or pa