ﻻ يوجد ملخص باللغة العربية
Within the context of very simple avoided crossing, we investigate the investigate the effect of a complex diabatic coupling in determining spin-dependent rate constants and scattering states. We find that, if the molecular geometry is not linear and the Berry force is not zero, one can find significant spin polarization of the products. This study emphasizes that, when analyzing nonadiabatic reactions with spin orbit coupling (and a complex Hamiltonian), one must consider how Berry force affects nuclear motion -- at least in the context of gas phase reactions. Work is currently ongoing as far as extrapolating these conclusions to the condensed phase where interesting spin selection has been observed in recent years.
Spin-dependent partial conductances are evaluated in a tight-binding description of electron transport in the presence of spin-orbit (SO) couplings, using transfer-matrix methods. As the magnitude of SO interactions increases, the separation of spin-
We investigate the nuclear dynamics near a real-valued conical intersection that is perturbed by a complex-valued spin-orbit coupling. For a model Hamiltonian with two outgoing channels, we find that even a small spin-orbit coupling can dramatically
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where
The effects of spin independent hybridization potential and spin orbit coupling on two band superconductor with equal time s-wave inter band pairing order parameter is investigated theoretically. To study symmetry classes in two band superconductors
Density functional theory (DFT) calculations have been performed for the high-spin (HS) and low-spin (LS) isomers of a series of iron(II) spin crossover complexes with nitrogen ligands. The calculated charge densities have been analyzed in the framew