ترغب بنشر مسار تعليمي؟ اضغط هنا

A Study of Millimeter Variability in FUor Objects

94   0   0.0 ( 0 )
 نشر من قبل John Wendeborn
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

FU Orionis objects (FUors) are rapidly-accreting, pre-main sequence objects that are known to exhibit large outbursts at optical and near-infrared wavelengths, with post-eruption, small-scale photometric variability superimposed on longer-term trends. In contrast, little is known about the variability of FUors at longer wavelengths. To explore this further, we observed six FUor objects using the NOrthern Extended Millimeter Array (NOEMA) and for a subset of three objects we obtained coordinated observations with NOEMA and the Lowell Discovery Telescope (LDT). In combination with previously published NOEMA observations from 2014, our 2017 observations of V1735 Cyg provide the first detection of variability in an FUor object at 2.7 mm. In the absence of significant optical variability, we discount the possibility that the mm flux density changed as a result of irradiation from the central disk. In addition, a change in the dust mass due to infall is highly unlikely. A plausible explanation for the change in 2.7 mm flux density is variability in free-free emission due to changes in the objects jet/wind. Thus, it may be that free-free emission in some FUor objects is significant at $sim$3 mm and must be considered when deriving disk masses in order to help constrain the mechanism responsible for triggering FUor outbursts.



قيم البحث

اقرأ أيضاً

Using recent data from photometric monitoring and data from the photographic plate archives we aim to study, the long-term photometric behavior of FUors. The construction of the historical light curves of FUors could be very important for determining the beginning of the outburst, the time to reach the maximum light, the rate of increase and decrease in brightness, the pre-outburst variability of the star. Our CCD photometric observations were performed with the telescopes of the Rozhen (Bulgaria) and Skinakas (Crete, Greece) observatories. Most suitable for long-term photometric study are the plate archives of the big Schmidt telescopes, as the telescopes at Kiso Observatory, Asiago Observatory, Palomar Observatory and others. In comparing our results with light curves of the well-studied FUors, we conclude that every new FUor object shows different photometric behavior. Each known FUor has a different rate of increase and decrease in brightness and a different light curve shape.
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
As part of an ALMA survey to study the origin of episodic accretion in young eruptive variables, we have observed the circumstellar environment of the star V2775 Ori. This object is a very young, pre-main sequence object which displays a large amplit ude outburst characteristic of the FUor class. We present Cycle-2 band 6 observations of V2775 Ori with a continuum and CO (2-1) isotopologue resolution of 0.25as (103 au). We report the detection of a marginally resolved circumstellar disc in the ALMA continuum with an integrated flux of $106 pm 2$ mJy, characteristic radius of $sim$ 30 au, inclination of $14.0^{+7.8}_{-14.5}$ deg, and is oriented nearly face-on with respect to the plane of the sky. The co~emission is separated into distinct blue and red-shifted regions that appear to be rings or shells of expanding material from quasi-episodic outbursts. The system is oriented in such a way that the disc is seen through the outflow remnant of V2775 Ori, which has an axis along our line-of-sight. The $^{13}$CO emission displays similar structure to that of the co, while the C$^{18}$O line emission is very weak. We calculated the expansion velocities of the low- and medium-density material with respect to the disc to be of -2.85 km s$^{-1}$ (blue), 4.4 km s$^{-1}$ (red) and -1.35 and 1.15 km s$^{-1}$ (for blue and red) and we derived the mass, momentum and kinetic energy of the expanding gas. The outflow has an hourglass shape where the cavities are not seen. We interpret the shapes that the gas traces as cavities excavated by an ancient outflow. We report a detection of line emission from the circumstellar disc and derive a lower limit of the gas mass of 3 MJup.
We present Atacama Large Millimeter/ sub-millimeter Array (ALMA) observations of V883 Ori, an FU Ori object. We describe the molecular outflow and envelope of the system based on the $^{12}$CO and $^{13}$CO emissions, which together trace a bipolar m olecular outflow. The C$^{18}$O emission traces the rotational motion of the circumstellar disk. From the $^{12}$CO blue-shifted emission, we estimate a wide opening angle of $sim$ 150$^{^{circ}}$ for the outflow cavities. Also, we find that the outflow is very slow (characteristic velocity of only 0.65 km~s$^{-1}$), which is unique for an FU Ori object. We calculate the kinematic properties of the outflow in the standard manner using the $^{12}$CO and $^{13}$CO emissions. In addition, we present a P Cygni profile observed in the high-resolution optical spectrum, evidence of a wind driven by the accretion and being the cause for the particular morphology of the outflows. We discuss the implications of our findings and the rise of these slow outflows during and/or after the formation of a rotationally supported disk.
The VVV survey has allowed for an unprecedented number of multi-epoch observations of the southern Galactic plane. In a recent paper,13 massive young stellar objects(MYSOs) have already been identified within the highly variable(Delta Ks > 1 mag) YSO sample of another published work.This study aims to understand the general nature of variability in MYSOs.We present the first systematic study of variability in a large sample of candidate MYSOs.We examined the data for variability of the putative driving sources of all known Spitzer EGOs and bright 24 mu m sources coinciding with the peak of 870 mu m detected ATLASGAL clumps, a total of 718 targets. Of these, 190 point sources (139 EGOs and 51 non-EGOs) displayed variability (IQR > 0.05, Delta Ks > 0.15 mag). Light-curves(LCs) have been sub-classified into eruptive, dipper, fader, short-term-variable and long-period variable-YSO categories.Lomb-Scargle periodogram analysis of periodic LCs was carried out. 1 - 870 mu m spectral energy distributions of the variable sources were fitted with YSO models to obtain representative properties. 41% of the variable sources are represented by > 4Msun objects, and only 6% by > 8Msun objects.The highest-mass objects are mostly non-EGOs,deeply embedded.By placing them on the HR diagram we show that most lower mass,EGO type objects are concentrated on the putative birth-line position, while the luminous non-EGO type objects group around the ZAMS track.Some of the most luminous far infrared sources in the massive clumps and infrared quiet driving sources of EGOs have been missed out by this study owing to an uniform sample selection method.A high rate of detectable variability in EGO targets (139 out of 153 searched) implies that near-infrared variability in MYSOs is closely linked to the accretion phenomenon and outflow activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا