ﻻ يوجد ملخص باللغة العربية
Three types of fermions have been extensively studied in topological quantum materials: Dirac, Weyl, and Majorana fermions. Beyond the fundamental fermions in high energy physics, exotic fermions are allowed in condensed matter systems residing in three-, six- or eightfold degenerate band crossings. Here, we use angle-resolved photoemission spectroscopy to directly visualize three-doubly-degenerate bands in PdSb$_2$. The ultrahigh energy resolution we are able to achieve allows for the confirmation of all the sixfold degenerate bands at the R point, in remarkable consistency with first-principles calculations. Moreover, we find that this sixfold degenerate crossing has quadratic dispersion as predicted by theory. Finally, we compare sixfold degenerate fermions with previously confirmed fermions to demonstrate the importance of this work: our study indicates a topological fermion beyond the constraints of high energy physics.
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gaps effect on the optical and transport beha
In strongly correlated materials, quasiparticle excitations can carry fractional quantum numbers. An intriguing possibility is the formation of fractionalized, charge-neutral fermions, e.g., spinons and fermionic excitons, that result in neutral Ferm
Moire heterobilayer transition metal dichalcogenides (TMDs) emerge as an ideal system for simulating the single-band Hubbard model and interesting correlated phases have been observed in these systems. Nevertheless, the moire bands in heterobilayer T
In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here we show that in solid state systems this classification is incomplete and find several additional types of crystal symmetry-protected free fermio
Memory or transistor devices based on electrons spin rather than its charge degree of freedom offer certain distinct advantages and comprise a cornerstone of spintronics. Recent years have witnessed the emergence of a new field, valleytronics, which