ﻻ يوجد ملخص باللغة العربية
PTFO 8-8695 (CVSO 30) is a star in the 7-10 million year old Orion-OB1a cluster that shows brightness dips that resemble planetary transits. Although strong evidence against the planet hypothesis has been presented, the possibility remains debated in the literature. To obtain further clues, we inspected data from the NASA Transiting Exoplanet Survey Satellite (TESS) and the ESA Gaia mission. The Gaia data suggest that PTFO 8-8695 is a binary: the photometric data show it to be overluminous with respect to members of its kinematic group, and the astrometric data are inconsistent with a single star. The TESS light curve shows two different photometric periods. The variability is dominated by a sinusoidal signal with a period of 11.98 hr, presumably caused by stellar rotation. Also present is a 10.76 hr signal consisting of a not-quite sinusoid interrupted by hour-long dips, the type of signal previously interpreted as planetary transits. The phase of the dips is nearly 180$^circ$ away from the phase of the originally reported dips. As noted previously, this makes them difficult to explain as planetary transits. Instead, we believe that PTFO 8-8695 is a pair of young and rapidly rotating M dwarfs, one of which shows the same transient-dipper behavior that has been seen in at least 5 other cases. The origin of these transient dips is still unknown but likely involves circumstellar material.
We present Spitzer 4.5micron light curve observations, Keck NIRSPEC radial velocity observations, and LCOGT optical light curve observations of PTFO~8-8695, which may host a Jupiter-sized planet in a very short orbital period (0.45 days). Previous wo
We present a line-by-line differential analysis of a sample of 16 planet hosting stars and 68 comparison stars using high resolution, high signal-to-noise ratio spectra gathered using Keck. We obtained accurate stellar parameters and high-precision r
We present new UBV(RI)_C photometry of 22 stars that host transiting planets, 19 of which were discovered by the WASP survey. We use these data together with 2MASS JHK_S photometry to estimate the effective temperature of these stars using the infrar
Since giant planets scatter planetesimals within a few tidal radii of their orbits, the locations of existing planetesimal belts indicate regions where giant planet formation failed in bygone protostellar disks. Infrared observations of circumstellar