ﻻ يوجد ملخص باللغة العربية
Before cosmic reionization, hydrogen atoms acquire a spin polarization quadrupole through interaction with the anisotropic 21-cm radiation field. The interaction of this quadrupole with anisotropies in the cosmic microwave background (CMB) radiation field gives a net spin orientation to the hydrogen atoms. The 21-cm radiation emitted by these spin-oriented hydrogen atoms is circularly polarized. Here, we reformulate succinctly the derivation of the expression for this circular polarization in terms of Cartesian (rather than spherical) tensors. We then compute the angular power spectrum of the observed Stokes-$V$ parameter in the standard $Lambda$CDM cosmological model and show how it depends on redshift, or equivalently, the observed frequency.
We investigate the feasibility of measuring weak gravitational lensing using 21cm intensity mapping with special emphasis on the performance of the planned Square Kilometre Array (SKA). We find that the current design for SKA-Mid should be able to me
We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, nonzero curvature,
We present new optical circular polarization measurements with typical uncertainties < 0.1% for a sample of 21 quasars. All but two objects have null circular polarization. We use this result to constrain the polarization due to photon-pseudoscalar m
We present an improved Minimal Variance (MV) method for using a radial peculiar velocity sample to estimate the average of the three-dimensional velocity field over a spherical volume, which leads to an easily interpretable bulk flow measurement. The
We perform a general test of the $Lambda{rm CDM}$ and $w {rm CDM}$ cosmological models by comparing constraints on the geometry of the expansion history to those on the growth of structure. Specifically, we split the total matter energy density, $Ome