ﻻ يوجد ملخص باللغة العربية
High-dimensional entangled states are promising candidates for increasing the security and encoding capacity of quantum systems. While it is possible to witness and set bounds for the entanglement, precisely quantifying the dimensionality and purity in a fast and accurate manner remains an open challenge. Here, we report an approach that simultaneously returns the dimensionality and purity of high-dimensional entangled states by simple projective measurements. We show that the outcome of a conditional measurement returns a visibility that scales monotonically with entanglement dimensionality and purity, allowing for quantitative measurements for general photonic quantum systems. We illustrate our method using transverse spatial modes of photons that carry orbital angular momentum and verify high-dimensional entanglement over a wide range of state purities. Our approach advances the high-dimensional tool box for characterising quantum states by providing a simple and direct dimensionality and purity measure, even for mixed entangled states.
We demonstrate the quantized transfer of photon energy and transverse momentum to a high-coherence electron beam. In an ultrafast transmission electron microscope, a three-dimensional phase modulation of the electron wavefunction is induced by transm
Vectorially structured light has emerged as an enabling tool in many diverse applications, from communication to imaging, exploiting quantum-like correlations courtesy of a non-separable spatially varying polarization structure. Creating these states
High-dimensional data and high-dimensional representations of reality are inherent features of modern Artificial Intelligence systems and applications of machine learning. The well-known phenomenon of the curse of dimensionality states: many problems
In this paper, we investigate the propagation of two-mode spatially Gaussian-entangled quantum light fields passing through the turbulence atmosphere. From the propagation formula of the two-mode wave function in the position representation, we have
Entangled multiphoton states lie at the heart of quantum information, computing, and communications. In recent years, topology has risen as a new avenue to robustly transport quantum states in the presence of fabrication defects, disorder and other n