ﻻ يوجد ملخص باللغة العربية
We observe the dissipative dynamics of a dense, strongly interacting gas of bosonic atom pairs in an optical lattice, controlling the strength of the two-body interactions over a wide parameter regime. We study how three-body losses contribute to the lattice dynamics, addressing a number of open questions related to the effects of strong dissipation in a many-body system, including the relationship to the continuous quantum Zeno effect. We observe rapid break-up of bound pairs for weak interactions, and for stronger interactions we see doublon decay rates that are asymmetric when changing from attractive and repulsive interactions, and which strongly depend on the interactions and on-site loss rates. By comparing our experimental data with a theoretical analysis of few-body dynamics, we show that these features originate from a non-trivial combination of dissipative dynamics described by a lattice model beyond a standard Bose-Hubbard Hamiltonian, and the modification of three-atom dynamics on a single site, which is generated alongside strong three-body loss. Our results open new possibilities for investigating bosonic atoms with strong three-body loss features, and allow for the better understanding of the parameter regimes that are required to realize strong effective three-body interactions.
We investigate the many-body dissipative dynamics of fermionic atoms in an optical lattice in the presence of incoherent light scattering. Deriving and solving a master equation to describe this process microscopically for many particles, we observe
We study quantum dynamics of a dark soliton in a one-dimensional Bose gas in an optical lattice within the truncated Wigner approximation. A previous work has revealed that in the absence of quantum fluctuations, dynamical stability of the dark solit
Non-standard Bose-Hubbard models can exhibit rich ground state phase diagrams, even when considering the one-dimensional limit. Using a self-consistent Gutzwiller diagonalisation approach, we study the mean-field ground state properties of a long-ran
We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that o
Ultracold polar molecules provide an excellent platform to study quantum many-body spin dynamics, which has become accessible in the recently realized low entropy quantum gas of polar molecules in an optical lattice. To obtain a detailed understandin