ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Contrast Integral Field Spectrograph (HCIFS): multi-spectral wavefront control and reduced-dimensional system identification

481   0   0.0 ( 0 )
 نشر من قبل He Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Any high-contrast imaging instrument in a future large space-based telescope will include an integral field spectrograph (IFS) for measuring broadband starlight residuals and characterizing the exoplanets atmospheric spectrum. In this paper, we report the development of a high-contrast integral field spectrograph (HCIFS) at Princeton University and demonstrate its application in multi-spectral wavefront control. Moreover, we propose and experimentally validate a new reduced-dimensional system identification algorithm for an IFS imaging system, which improves the systems wavefront control speed, contrast and computational and data storage efficiency.

قيم البحث

اقرأ أيضاً

65 - Olivier Guyon 2009
The Phase-Induced Amplitude Apodization (PIAA) coronagraph is a high performance coronagraph concept able to work at small angular separation with little loss in throughput. We present results obtained with a laboratory PIAA system including active w avefront control. The system has a 94.3% throughput (excluding coating losses) and operates in air with monochromatic light. Our testbed achieved a 2.27e-7 raw contrast between 1.65 lambda/D (inner working angle of the coronagraph configuration tested) and 4.4 lambda/D (outer working angle). Through careful calibration, we were able to separate this residual light into a dynamic coherent component (turbulence, vibrations) at 4.5e-8 contrast and a static incoherent component (ghosts and/or polarization missmatch) at 1.6e-7 contrast. Pointing errors are controlled at the 1e-3 lambda/D level using a dedicated low order wavefront sensor. While not sufficient for direct imaging of Earth-like planets from space, the 2.27e-7 raw contrast achieved already exceeds requirements for a ground-based Extreme Adaptive Optics system aimed at direct detection of more massive exoplanets. We show that over a 4hr long period, averaged wavefront errors have been controlled to the 3.5e-9 contrast level. This result is particularly encouraging for ground based Extreme-AO systems relying on long term stability and absence of static wavefront errors to recover planets much fainter than the fast boiling speckle halo.
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-co ntrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at framerates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Future space telescopes with coronagraph instruments will use a wavefront sensor (WFS) to measure and correct for phase errors and stabilize the stellar intensity in high-contrast images. The HabEx and LUVOIR mission concepts baseline a Zernike wavef ront sensor (ZWFS), which uses Zernikes phase contrast method to convert phase in the pupil into intensity at the WFS detector. In preparation for these potential future missions, we experimentally demonstrate a ZWFS in a coronagraph instrument on the Decadal Survey Testbed in the High Contrast Imaging Testbed facility at NASAs Jet Propulsion Laboratory. We validate that the ZWFS can measure low- and mid-spatial frequency aberrations up to the control limit of the deformable mirror, with surface height sensitivity as small as 1 pm, using a configuration similar to the HabEx and LUVOIR concepts. Furthermore, we demonstrate closed-loop control, resolving an individual DM actuator, with residuals consistent with theoretical models. In addition, we predict the expected performance of a ZWFS on future space telescopes using natural starlight from a variety of spectral types. The most challenging scenarios require ~1 hr of integration time to achieve picometer sensitivity. This timescale may be drastically reduced by using internal or external laser sources for sensing purposes. The experimental results and theoretical predictions presented here advance the WFS technology in the context of the next generation of space telescopes with coronagraph instruments.
The Magellan extreme adaptive optics (MagAO-X) instrument is a new extreme adaptive optics (ExAO) system designed for operation in the visible to near-IR which will deliver high contrast-imaging capabilities. The main AO system will be driven by a py ramid wavefront sensor (PyWFS); however, to mitigate the impact of quasi-static and non-common path (NCP) aberrations, focal plane wavefront sensing (FPWFS) in the form of low-order wavefront sensing (LOWFS) and spatial linear dark field control (LDFC) will be employed behind a vector apodizing phase plate (vAPP) coronagraph using rejected starlight at an intermediate focal plane. These techniques will allow for continuous high-contrast imaging performance at the raw contrast level delivered by the vAPP coronagraph 6 x 10^-5. We present simulation results for LOWFS and spatial LDFC with a vAPP coronagraph, as well as laboratory results for both algorithms implemented with a vAPP coronagraph at the University of Arizona Extreme Wavefront Control Lab.
The challenges of high contrast imaging (HCI) for detecting exoplanets for both ground and space applications can be met with extreme adaptive optics (ExAO), a high-order adaptive optics system that performs wavefront sensing (WFS) and correction at high speed. We describe two ExAO optical system designs, one each for ground-based telescopes and space-based missions, and examine them using the angular spectrum Fresnel propagation module within the Physical Optics Propagation in Python (POPPY) package. We present an end-to-end (E2E) simulation of the MagAO-X instrument, an ExAO system capable of delivering 6$times10^{-5}$ visible-light raw contrast for static, noncommon path aberrations without atmosphere. We present a laser guidestar (LGS) companion spacecraft testbed demonstration, which uses a remote beacon to increase the signal available for WFS and control of the primary aperture segments of a future large space telescope, providing on order of a factor of ten factor improvement for relaxing observatory stability requirements. The LGS E2E simulation provides an easily adjustable model to explore parameters, limits, and trade-offs on testbed design and characterization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا