ﻻ يوجد ملخص باللغة العربية
In this work we demonstrate new BCH-like relations involving the generators of the su(1, 1), su(2) and so(2, 1) Lie algebras. We use our results to obtain in a straightforward way the composition of an arbitrary number of elements of the corresponding Lie groups. In order to make a self-consistent check of our results, as a first application we recover the non-trivial composition law of two arbitrary squeezing operators. As a second application, we show how our results can be used to compute the time evolution operator of physical systems described by time-dependent hamiltonians given by linear combinations of the generators of the aforementioned Lie algebras.
Massless flows between the coset model su(2)_{k+1} otimes su(2)_k /su(2)_{2k+1} and the minimal model M_{k+2} are studied from the viewpoint of form factors. These flows include in particular the flow between the Tricritical Ising model and the Ising
Massless flows from the coset model su(2)_k+1 otimes su(2)_k /su(2)_2k+1 to the minimal model M_k+2 are studied from the viewpoint of form factors. These flows include in particular the flow from the Tricritical Ising model to the Ising model. By ana
In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equ
We consider extension of the standard model $SU(2)_l times SU(2)_h times U(1)$ where the first two families of quarks and leptons transform according to the $SU(2)_l$ group and the third family according to the $SU(2)_h$ group. In this approach, the
We propose that the SU(2) x SU(2) x U(1) (aka G221) models could provide us a 750 GeV scalar resonance that may account for the diphoton excess observed at the LHC while satisfying present collider constraints. The neutral component of the $SU(2)_R$