ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects

63   0   0.0 ( 0 )
 نشر من قبل Marcelo Lozada-Hidalgo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries and Stone-Wales defects are predicted to enhance graphenes proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes ~1,000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of 8-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to the 6-atom rings of graphene and a relatively low barrier of ~0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.



قيم البحث

اقرأ أيضاً

Developing smart membranes that allow precise and reversible control of molecular permeation using external stimuli would be of intense interest for many areas of science: from physics and chemistry to life-sciences. In particular, electrical control of water permeation through membranes is a long-sought objective and is of crucial importance for healthcare and related areas. Currently, such adjustable membranes are limited to the modulation of wetting of the membranes and controlled ion transport, but not the controlled mass flow of water. Despite intensive theoretical work yielding conflicting results, the experimental realisation of electrically controlled water permeation has not yet been achieved. Here we report electrically controlled water permeation through micrometre-thick graphene oxide (GO) membranes. By controllable electric breakdown, conductive filaments are created in the GO membrane. The electric field concentrated around such current carrying filaments leads to controllable ionisation of water molecules in graphene capillaries, allowing precise control of water permeation: from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies and can revolutionize the field of artificial biological systems, tissue engineering and filtration.
A 3D mechanical stable scaffold is shown to accommodate the volume change of a high specific capacity nickel-tin nanocomposite Li-ion battery anode. When the nickel-tin anode is formed on an electrochemically inactive conductive scaffold with an engi neered free volume and controlled characteristic dimensions, it exhibits significantly improved the cyclability.
Many of the proposed future applications of graphene require the controlled introduction of defects into its perfect lattice. Energetic ions provide one way of achieving this challenging goal. Single heavy ions with kinetic energies in the 100 MeV ra nge will produce nanometer-sized defects on dielectric but generally not on crystalline metal surfaces. In a metal the ion-induced electronic excitations are efficiently dissipated by the conduction electrons before the transfer of energy to the lattice atoms sets in. Therefore, graphene is not expected to be irradiation sensitive beyond the creation of point defects. Here we show that graphene on a dielectric substrate sustains major modifications if irradiated under oblique angles. Due to a combination of defect creation in the graphene layer and hillock creation in the substrate, graphene is split and folded along the ion track yielding double layer nanoribbons. Our results indicate that the radiation hardness of graphene devices is questionable but also open up a new way of introducing extended low-dimensional defects in a controlled way.
While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step-by-step by nucleation and growth of low-energy multi-vacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.
135 - Chia-Hao Lee 2020
2D materials offer an ideal platform to study the strain fields induced by individual atomic defects, yet challenges associated with radiation damage have so-far limited electron microscopy methods to probe these atomic-scale strain fields. Here, we demonstrate an approach to probe single-atom defects with sub-picometer precision in a monolayer 2D transition metal dichalcogenide, WSe$_{2-2x}$Te$_{2x}$. We utilize deep learning to mine large datasets of aberration-corrected scanning transmission electron microscopy images to locate and classify point defects. By combining hundreds of images of nominally identical defects, we generate high signal-to-noise class-averages which allow us to measure 2D atomic coordinates with up to 0.3 pm precision. Our methods reveal that Se vacancies introduce complex, oscillating strain fields in the WSe$_{2-2x}$Te$_{2x}$ lattice which cannot be explained by continuum elastic theory. These results indicate the potential impact of computer vision for the development of high-precision electron microscopy methods for beam-sensitive materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا