ترغب بنشر مسار تعليمي؟ اضغط هنا

Gap, shadows, spirals, streamers: SPHERE observations of binary-disk interactions in GG Tau A

181   0   0.0 ( 0 )
 نشر من قبل Miriam Keppler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A large fraction of stars is found to be part of binary or higher-order multiple systems. The ubiquity of planets found around single stars raises the question if and how planets in binary systems may form. Protoplanetary disks are the birthplaces of planets, and their characterization is crucial in order to understand the planet formation process. Our aim is to characterize the morphology of the GG Tau A disk, one of the largest and most massive circumbinary disks, and trace evidence for binary-disk interactions. We obtained observations in polarized scattered light of GG Tau A using the SPHERE/IRDIS instrument in the H-band filter. We analyze the observed disk morphology and substructures. We run 2D hydrodynamical models simulating the evolution of the circumbinary ring over the lifetime of the disk. The disk, as well as the cavity and the inner region are highly structured with several shadowed regions, spiral structures, and streamer-like filaments, some of them detected for the first time. The streamer-like filaments appear to connect the outer ring with the northern arc. Their azimuthal spacing suggests that they may be generated by periodic perturbations by the binary, tearing off material from the inner edge of the outer disk once during each orbit. By comparing observations to hydrodynamical simulations we find that the main features, in particular the gap size, as well as the spiral and streamer filaments, can be qualitatively explained by the gravitational interactions of a binary with semi-major axis of $sim$35 au on an orbit coplanar with the circumbinary ring.

قيم البحث

اقرأ أيضاً

Context. With its high complexity, large size, and close distance, the ringworld around GG Tau A is an appealing case to study the formation and evolution of protoplanetary disks around multiple star systems. However, investigations with radiative tr ansfer models are usually neglecting the influence of the circumstellar dust around the individual stars. Aims. We investigate how circumstellar disks around the stars of GG Tau A are influencing the emission that is scattered at the circumbinary disk and if constraints on these circumstellar disks can be derived. Methods. We perform radiative transfer simulations with the code POLARIS to obtain spectral energy distributions and emission maps in the H-Band (near-infrared). Subsequently, we compare them with observations to achieve our aims. Results. We studied the ratio of polarized intensity at different locations in the circumbinary disk and conclude that the observed scattered-light near-infrared emission is best reproduced, if the circumbinary disk lies in the shadow of at least two co-planar circumstellar disks surrounding the central stars. This implies that the inner wall of the circumbinary disk is strongly obscured around the midplane, while the observed emission is actually dominated by the most upper disk layers. In addition, the inclined dark lane (gap) on the western side of the circumbinary disk, which is a stable (non rotating) feature since ~20yr, can only be explained by the self-shadowing of a misaligned circumstellar disk surrounding one of the two components of the secondary close-binary star GG Tau Ab.
We used new ALMA $^{13}$CO and C$^{18}$O(3-2) observations obtained at high angular resolution ($sim$0.2) together with previous CO(3-2) and (6-5) ALMA data and continuum maps at 1.3 and 0.8 mm in order to determine the gas properties (temperature, d ensity, and kinematics) in the cavity and to a lesser extent in the outer disk of GG Tau A, the prototype of a young triple T Tauri star that is surrounded by a massive and extended Keplerian outer disk. By deprojecting, we studied the radial and azimuthal gas distribution and its kinematics. We also applied a new method to improve the deconvolution of the CO data and in particular better quantify the emission from gas inside the cavity. We perform local and nonlocal thermodynamic equilibrium studies in order to determine the excitation conditions and relevant physical parameters inside the ring and in the central cavity. Residual emission after removing a smooth-disk model indicates unresolved structures at our angular resolution, probably in the form of irregular rings or spirals. The outer disk is cold, with a temperature $<20$ K beyond 250 au that drops quickly (r$^{-1}$). The kinematics of the gas inside the cavity reveals infall motions at about 10% of the Keplerian speed. We derive the amount of gas in the cavity, and find that the brightest clumps, which contain about 10% of this mass, have kinetic temperatures 40$-$80 K, CO column densities of a few 10$^{17}$ cm$^{-2}$, and H$_2$ densities around 10$^7$ cm$^{-3}$. Although the gas in the cavity is only a small fraction of the disk mass, the mass accretion rate throughout the cavity is comparable to or higher than the stellar accretion rate. It is accordingly sufficient to sustain the circumstellar disks on a long timescale.
We analyzed the young (2.8-Myr-old) binary system FS Tau A using near-infrared (H-band) high-contrast polarimetry data from Subaru/HiCIAO and sub-millimeter CO (J=2-1) line emission data from ALMA. Both the near-infrared and sub-millimeter observatio ns reveal several clear structures extending to $sim$240 AU from the stars. Based on these observations at different wavelengths, we report the following discoveries. One arm-like structure detected in the near-infrared band initially extends from the south of the binary with a subsequent turn to the northeast, corresponding to two bar-like structures detected in ALMA observations with an LSRK velocity of 1.19-5.64 km/s. Another feature detected in the near-infrared band extends initially from the north of the binary, relating to an arm-like structure detected in ALMA observations with an LSRK velocity of 8.17-16.43 km/s. From their shapes and velocities, we suggest that these structures can mostly be explained by two streamers that connect the outer circumbinary disk and the central binary components. These discoveries will be helpful for understanding the evolution of streamers and circumstellar disks in young binary systems.
Jets are rarely associated with pre-main-sequence intermediate-mass stars. Optical and near-IR observations of jet-driving sources are often hindered by the presence of a natal envelope. Jets around partly embedded sources are a useful diagnostic to constrain the geometry of the concealed protoplanetary disk. In fact, the jet-driving mechanisms are affected by both spatial anisotropies and episodic variations at the (sub-)au scale from the star. We obtained a rich set of high-contrast VLT/SPHERE observations from 0.6 micron to 2.2 micron of the young intermediate-mass star RY Tau. Given the proximity to the Sun of this source, our images have the highest spatial resolution ever obtained for an atomic jet. Optical observations in polarized light show no sign of the protoplanetary disk detected by ALMA. Instead, we observed a diffuse signal resembling a remnant envelope with an outflow cavity. The jet is detected in four spectral lines. The jet appears to be wiggling and its radial width increasing with the distance is complementary to the shape of the outflow cavity suggesting a strong jet/envelope interaction. Through the estimated tangential velocity, we revealed a possible connection between the launching time of the jet sub-structures and the stellar activity of RY Tau. RY Tau is at an intermediate stage toward the dispersal of the natal envelope. This source shows episodic increases of mass accretion/ejection similarly to other known intermediate-mass stars. The amount of observed jet wiggle is consistent with the presence of a precessing disk warp or misaligned inner disk that would be induced by an unseen planetary/sub-stellar companion at sub-/few-au scales. The high disk mass of RY Tau and of two other jet-driving intermediate-mass stars, HD163296 and MWC480, suggests that massive, full disks are more efficient at launching prominent jets.
We aim at unveiling the observational imprint of physical mechanisms that govern planetary formation in young, multiple systems. In particular, we investigate the impact of tidal truncation on the inner circumstellar disks. We observed the emblematic system GG Tau at high-angular resolution: a hierarchical quadruple system composed of low-mass T Tauri binary stars surrounded by a well-studied, massive circumbinary disk in Keplerian rotation. We used the near-IR 4-telescope combiner PIONIER on the VLTI and sparse-aperture-masking techniques on VLT/NaCo to probe this proto-planetary system at sub-AU scales. We report the discovery of a significant closure-phase signal in H and Ks bands that can be reproduced with an additional low-mass companion orbiting GG Tau Ab, at a (projected) separation rho = 31.7 +/- 0.2mas (4.4 au) and PA = 219.6 +/- 0.3deg. This finding offers a simple explanation for several key questions in this system, including the missing-stellar-mass problem and the asymmetry of continuum emission from the inner dust disks observed at millimeter wavelengths. Composed of now five co-eval stars with 0.02 <= Mstar <= 0.7 Msun, the quintuple system GG Tau has become an ideal test case to constrain stellar evolution models at young ages (few 10^6yr).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا