ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization in low energy kaon-hyperon interaction

54   0   0.0 ( 0 )
 نشر من قبل Celso de Camargo Barros Jr.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the low energy kaon-hyperon interaction considering effective chiral Lagrangians that include kaons, $sigma$ mesons, hyperons and the corresponding resonances. The scattering amplitudes are calculated and then we determine the angular distributions and polarizations.

قيم البحث

اقرأ أيضاً

In this work we study the low energy kaon-hyperon interaction considering effective chiral Lagrangians that include kaons, $sigma$ mesons, hyperons and the corresponding resonances. We calculate the scattering amplitudes, and then the total cross sec tions, angular distributions, polarizations and the $S$ and $P$ phase shifts.
In this work the low energy kaon-hyperon interaction is studied with nonlinear chiral invariant Lagragians considering kaons, hyperons, and the corresponding resonances in the intermediate states. We show the basic formalism to calculate the total cr oss sections, angular distributions, and some diagrams of interest.
58 - Zuo-tang Liang 2002
We show that, in $ u_mu Nto mu^-Lambda X$ at the NOMAD energies, it is impossible to separate the products of the fragmentation of the struck quark from those of the nucleon remnant. The latter has a large contribution even in the current fragmentati on region and has to be taken into account in calculating $Lambda$ polarization using different pictures. Based on this, we make a rough estimation for the longitudinal $Lambda$ polarization in $ u_{mu} N to mu^- Lambda X$ at the NOMAD energies. A comparison with the data is given and predictions for $ u_mu Ntomu^-Sigma^+X$ are presented.
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion--Sigma--Lambda amplitudes are determi ned from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).
We study the longitudinal polarization of the Sigma_bar and Xi_bar anti-hyperons in polarized high energy pp collisions at large transverse momenta, extending a recent study for the Lambda_bar anti-hyperon. We make predictions by using different para metrizations of the polarized parton densities and models for the polarized fragmentation functions. Similar to the Lambda_bar polarization, the Xi_bar0 and Xi_bar+ polarizations are found to be sensitive to the polarized anti-strange sea in the nucleon. The Sigma_bar- and Sigma_bar+ polarizations show sensitivity to the light sea quark polarizations, Delta bar u(x) and Delta bar d(x), and their asymmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا