ترغب بنشر مسار تعليمي؟ اضغط هنا

Visual Memorability for Robotic Interestingness via Unsupervised Online Learning

156   0   0.0 ( 0 )
 نشر من قبل Chen Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we explore the problem of interesting scene prediction for mobile robots. This area is currently underexplored but is crucial for many practical applications such as autonomous exploration and decision making. Inspired by industrial demands, we first propose a novel translation-invariant visual memory for recalling and identifying interesting scenes, then design a three-stage architecture of long-term, short-term, and online learning. This enables our system to learn human-like experience, environmental knowledge, and online adaption, respectively. Our approach achieves much higher accuracy than the state-of-the-art algorithms on challenging robotic interestingness datasets.

قيم البحث

اقرأ أيضاً

Real world learning scenarios involve a nonstationary distribution of classes with sequential dependencies among the samples, in contrast to the standard machine learning formulation of drawing samples independently from a fixed, typically uniform di stribution. Furthermore, real world interactions demand learning on-the-fly from few or no class labels. In this work, we propose an unsupervised model that simultaneously performs online visual representation learning and few-shot learning of new categories without relying on any class labels. Our model is a prototype-based memory network with a control component that determines when to form a new class prototype. We formulate it as an online Gaussian mixture model, where components are created online with only a single new example, and assignments do not have to be balanced, which permits an approximation to natural imbalanced distributions from uncurated raw data. Learning includes a contrastive loss that encourages different views of the same image to be assigned to the same prototype. The result is a mechanism that forms categorical representations of objects in nonstationary environments. Experiments show that our method can learn from an online stream of visual input data and is significantly better at category recognition compared to state-of-the-art self-supervised learning methods.
170 - Qi Qian , Yuanhong Xu , Juhua Hu 2021
Cluster discrimination is an effective pretext task for unsupervised representation learning, which often consists of two phases: clustering and discrimination. Clustering is to assign each instance a pseudo label that will be used to learn represent ations in discrimination. The main challenge resides in clustering since many prevalent clustering methods (e.g., k-means) have to run in a batch mode that goes multiple iterations over the whole data. Recently, a balanced online clustering method, i.e., SwAV, is proposed for representation learning. However, the assignment is optimized within only a small subset of data, which can be suboptimal. To address these challenges, we first investigate the objective of clustering-based representation learning from the perspective of distance metric learning. Based on this, we propose a novel clustering-based pretext task with online textbf{Co}nstrained textbf{K}-mtextbf{e}ans (textbf{CoKe}) to learn representations and relations between instances simultaneously. Compared with the balanced clustering that each cluster has exactly the same size, we only constrain the minimum size of clusters to flexibly capture the inherent data structure. More importantly, our online assignment method has a theoretical guarantee to approach the global optimum. Finally, two variance reduction strategies are proposed to make the clustering robust for different augmentations. Without keeping representations of instances, the data is accessed in an online mode in CoKe while a single view of instances at each iteration is sufficient to demonstrate a better performance than contrastive learning methods relying on two views. Extensive experiments on ImageNet verify the efficacy of our proposal. Code will be released.
510 - Xiaochuan Yin , Chengju Liu 2019
For ego-motion estimation, the feature representation of the scenes is crucial. Previous methods indicate that both the low-level and semantic feature-based methods can achieve promising results. Therefore, the incorporation of hierarchical feature r epresentation may benefit from both methods. From this perspective, we propose a novel direct feature odometry framework, named DFO, for depth estimation and hierarchical feature representation learning from monocular videos. By exploiting the metric distance, our framework is able to learn the hierarchical feature representation without supervision. The pose is obtained with a coarse-to-fine approach from high-level to low-level features in enlarged feature maps. The pixel-level attention mask can be self-learned to provide the prior information. In contrast to the previous methods, our proposed method calculates the camera motion with a direct method rather than regressing the ego-motion from the pose network. With this approach, the consistency of the scale factor of translation can be constrained. Additionally, the proposed method is thus compatible with the traditional SLAM pipeline. Experiments on the KITTI dataset demonstrate the effectiveness of our method.
Reward function design and exploration time are arguably the biggest obstacles to the deployment of reinforcement learning (RL) agents in the real world. In many real-world tasks, designing a reward function takes considerable hand engineering and of ten requires additional sensors to be installed just to measure whether the task has been executed successfully. Furthermore, many interesting tasks consist of multiple implicit intermediate steps that must be executed in sequence. Even when the final outcome can be measured, it does not necessarily provide feedback on these intermediate steps. To address these issues, we propose leveraging the abstraction power of intermediate visual representations learned by deep models to quickly infer perceptual reward functions from small numbers of demonstrations. We present a method that is able to identify key intermediate steps of a task from only a handful of demonstration sequences, and automatically identify the most discriminative features for identifying these steps. This method makes use of the features in a pre-trained deep model, but does not require any explicit specification of sub-goals. The resulting reward functions can then be used by an RL agent to learn to perform the task in real-world settings. To evaluate the learned reward, we present qualitative results on two real-world tasks and a quantitative evaluation against a human-designed reward function. We also show that our method can be used to learn a real-world door opening skill using a real robot, even when the demonstration used for reward learning is provided by a human using their own hand. To our knowledge, these are the first results showing that complex robotic manipulation skills can be learned directly and without supervised labels from a video of a human performing the task. Supplementary material and data are available at https://sermanet.github.io/rewards
Depth estimation, as a necessary clue to convert 2D images into the 3D space, has been applied in many machine vision areas. However, to achieve an entire surrounding 360-degree geometric sensing, traditional stereo matching algorithms for depth esti mation are limited due to large noise, low accuracy, and strict requirements for multi-camera calibration. In this work, for a unified surrounding perception, we introduce panoramic images to obtain larger field of view. We extend PADENet first appeared in our previous conference work for outdoor scene understanding, to perform panoramic monocular depth estimation with a focus for indoor scenes. At the same time, we improve the training process of the neural network adapted to the characteristics of panoramic images. In addition, we fuse traditional stereo matching algorithm with deep learning methods and further improve the accuracy of depth predictions. With a comprehensive variety of experiments, this research demonstrates the effectiveness of our schemes aiming for indoor scene perception.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا