ﻻ يوجد ملخص باللغة العربية
Recent end-to-end deep neural networks for disparity regression have achieved the state-of-the-art performance. However, many well-acknowledged specific properties of disparity estimation are omitted in these deep learning algorithms. Especially, matching cost volume, one of the most important procedure, is treated as a normal intermediate feature for the following softargmin regression, lacking explicit constraints compared with those traditional algorithms. In this paper, inspired by previous canonical definition of cost volume, we propose the noise-sampling cross entropy loss function to regularize the cost volume produced by deep neural networks to be unimodal and coherent. Extensive experiments validate that the proposed noise-sampling cross entropy loss can not only help neural networks learn more informative cost volume, but also lead to better stereo matching performance compared with several representative algorithms.
Neural Style Transfer (NST) has quickly evolved from single-style to infinite-style models, also known as Arbitrary Style Transfer (AST). Although appealing results have been widely reported in literature, our empirical studies on four well-known AST
Learning-based stereo matching has recently achieved promising results, yet still suffers difficulties in establishing reliable matches in weakly matchable regions that are textureless, non-Lambertian, or occluded. In this paper, we address this chal
Neural architecture search (NAS) has shown great promise in designing state-of-the-art (SOTA) models that are both accurate and efficient. Recently, two-stage NAS, e.g. BigNAS, decouples the model training and searching process and achieves remarkabl
Deep learning methods have achieved excellent performance in pose estimation, but the lack of robustness causes the keypoints to change drastically between similar images. In view of this problem, a stable heatmap regression method is proposed to all
In this paper, by modeling the point cloud registration task as a Markov decision process, we propose an end-to-end deep model embedded with the cross-entropy method (CEM) for unsupervised 3D registration. Our model consists of a sampling network mod