ترغب بنشر مسار تعليمي؟ اضغط هنا

Bright X-ray and Radio Pulses from a Recently Reactivated Magnetar

383   0   0.0 ( 0 )
 نشر من قبل Aaron B. Pearlman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetars are young, rotating neutron stars that possess larger magnetic fields ($B$ $approx$ $10^{13}$-$10^{15}$ G) and longer rotational periods ($P$ $approx$ 1-12 s) than ordinary pulsars. In contrast to rotation-powered pulsars, magnetar emission is thought to be fueled by the evolution and decay of their powerful magnetic fields. They display highly variable radio and X-ray emission, but the processes responsible for this behavior remain a mystery. We report the discovery of bright, persistent individual X-ray pulses from XTE J1810-197, a transient radio magnetar, using the Neutron star Interior Composition Explorer (NICER) following its recent radio reactivation. Similar behavior has only been previously observed from a magnetar during short time periods following a giant flare. However, the X-ray pulses presented here were detected outside of a flaring state. They are less energetic and display temporal structure that differs from the impulsive X-ray events previously observed from the magnetar class, such as giant flares and short X-ray bursts. Our high frequency radio observations of the magnetar, carried out simultaneously with the X-ray observations, demonstrate that the relative alignment between the X-ray and radio pulses varies on rotational timescales. No correlation was found between the amplitudes or temporal structure of the X-ray and radio pulses. The magnetars 8.3 GHz radio pulses displayed frequency structure, which was not observed in the pulses detected simultaneously at 31.9 GHz. Many of the radio pulses were also not detected simultaneously at both frequencies, which indicates that the underlying emission mechanism producing these pulses is not broadband. We find that the radio pulses from XTE J1810-197 share similar characteristics to radio bursts detected from fast radio burst (FRB) sources, some of which are now thought to be produced by active magnetars.


قيم البحث

اقرأ أيضاً

160 - G.L. Israel , M. Burgay , N. Rea 2020
We report on simultaneous radio and X-ray observations of the radio-emitting magnetar 1E1547.0-5408 on 2009 January 25 and February 3, with the 64-m Parkes radio telescope and the Chandra and XMM-Newton X-ray observatories. The magnetar was observed in a period of intense X-ray bursting activity and enhanced X-ray emission. We report here on the detection of two radio bursts from 1E1547.0-5408, reminiscent of Fast Radio Bursts (FRBs). One of the radio bursts was anticipated by ~1s (about half a rotation period of the pulsar) by a bright SGR-like X-ray burst, resulting in a F_radio/F_X ~ 10^-9. Radio pulsations were not detected during the observation showing the FRB-like radio bursts, while they were detected in the previous radio observation. We also found that the two radio bursts are neither aligned with the latter radio pulsations nor with the peak of the X-ray pulse profile (phase shift of ~0.2). Comparing the luminosity of these FRB-like bursts and those reported from SGR1935+2154, we find that the wide range in radio efficiency and/or luminosity of magnetar bursts in the Galaxy may bridge the gap between ordinary pulsar radio bursts and the extragalactic FRB phenomenon.
Magnetars are highly magnetized young neutron stars that occasionally produce enormous bursts and flares of X-rays and gamma-rays. Of the approximately thirty magnetars currently known in our Galaxy and Magellanic Clouds, five have exhibited transien t radio pulsations. Fast radio bursts (FRBs) are millisecond-duration bursts of radio waves arriving from cosmological distances. Some have been seen to repeat. A leading model for repeating FRBs is that they are extragalactic magnetars, powered by their intense magnetic fields. However, a challenge to this model has been that FRBs must have radio luminosities many orders of magnitude larger than those seen from known Galactic magnetars. Here we report the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project. The fluence of this two-component bright radio burst and the estimated distance to SGR 1935+2154 together imply a 400-800 MHz burst energy of $sim 3 times 10^{34}$ erg, which is three orders of magnitude brighter than those of any radio-emitting magnetar detected thus far. Such a burst coming from a nearby galaxy would be indistinguishable from a typical FRB. This event thus bridges a large fraction of the radio energy gap between the population of Galactic magnetars and FRBs, strongly supporting the notion that magnetars are the origin of at least some FRBs.
As part of a survey for radio pulsars with the Parkes 64-m telescope we have discovered PSR J1622-4950, a pulsar with a 4.3-s rotation period. Follow-up observations show that the pulsar has the highest inferred surface magnetic field of the known ra dio pulsars (B ~ 3e14 G), exhibits significant timing noise and appears to have an inverted spectrum. Unlike the vast majority of the known pulsar population, PSR J1622-4950 appears to switch off for many hundreds of days and even in its on-state exhibits extreme variability in its flux density. Furthermore, the integrated pulse profile changes shape with epoch. All of these properties are remarkably similar to the only two magnetars previously known to emit radio pulsations. The position of PSR J1622-4950 is coincident with an X-ray source that, unlike the other radio pulsating magnetars, was found to be in quiescence. We conclude that our newly discovered pulsar is a magnetar - the first to be discovered via its radio emission.
Fast radio bursts (FRBs) are short (millisecond) radio pulses originating from enigmatic sources at extragalactic distances so far lacking a detection in other energy bands. Magnetized neutron stars (magnetars) have been considered as the sources pow ering the FRBs, but the connection is controversial because of differing energetics and the lack of radio and X-ray detections with similar characteristics in the two classes. We report here the detection by the AGILE satellite on April 28, 2020 of an X-ray burst in coincidence with the very bright radio burst from the Galactic magnetar SGR 1935+2154. The burst detected by AGILE in the hard X-ray band (18-60 keV) lasts about 0.5 seconds, it is spectrally cutoff above 80 keV, and implies an isotropically emitted energy ~ $10^{40}$ erg. This event is remarkable in many ways: it shows for the first time that a magnetar can produce X-ray bursts in coincidence with FRB-like radio bursts; it also suggests that FRBs associated with magnetars may emit X-ray bursts of both magnetospheric and radio-pulse types that may be discovered in nearby sources. Guided by this detection, we discuss SGR 1935+2154 in the context of FRBs, and especially focus on the class of repeating-FRBs. Based on energetics, magnetars with fields B ~ $10^{15}$ G may power the majority of repeating-FRBs. Nearby repeating-FRBs offer a unique occasion to consolidate the FRB-magnetar connection, and we present new data on the X-ray monitoring of nearby FRBs. Our detection enlightens and constrains the physical process leading to FRBs: contrary to previous expectations, high-brightness temperature radio emission coexists with spectrally-cutoff X-ray radiation.
Magnetars are believed to host the strongest magnetic fields in the present universe ($Bgtrsim10^{14}$ G) and the study of their persistent emission in the X-ray band offers an unprecendented opportunity to gain insight into physical processes in the presence of ultra-strong magnetic fields. Up to now, most of our knowledge about magnetar sources came from spectral analysis, which allowed to test the resonant Compton scattering scenario and to probe the structure of the star magnetosphere. On the other hand, radiation emitted from magnetar surface is expected to be strongly polarized and its observed polarization pattern bears the imprint of both scatterings onto magnetospheric charges and QED effects as it propagates in the magnetized vacuum around the star. X-ray polarimeters scheduled to fly in the next years will finally allow to exploit the wealth of information stored in the polarization observables. Here we revisit the problem of assessing the spectro-polarimetric properties of magnetar persistent emission. At variance with previous investigations, proper account for more physical surface emission models is made by considering either a condensed surface or a magnetized atmosphere. Results are used to simulate polarimetric observations with the forthcoming Imaging X-ray Polarimetry Explorer (IXPE). We find that X-ray polarimetry will allow to detect QED vacuum effects for all the emission models we considered and to discriminate among them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا