ترغب بنشر مسار تعليمي؟ اضغط هنا

A decoupled form of the structure-preserving doubling algorithm with low-rank structures

189   0   0.0 ( 0 )
 نشر من قبل Zhen-Chen Guo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure-preserving doubling algorithm (SDA) is a fairly efficient method for solving problems closely related to Hamiltonian (or Hamiltonian-like) matrices, such as computing the required solutions to algebraic Riccati equations. However, for large-scale problems in $mathbb{C}^n$ (also $mathbb{R}^n$), the SDA with an $O(n^3)$ computational complexity does not work well. In this paper, we propose a new decoupled form of the SDA (we name it as dSDA), building on the associated Krylov subspaces thus leading to the inherent low-rank structures. Importantly, the approach decouples the original two to four iteration formulae. The resulting dSDA is much more efficient since only one quantity (instead of the original two to four) is computed iteratively. For large-scale problems, further efficiency is gained from the low-rank structures. This paper presents the theoretical aspects of the dSDA. A practical algorithm dSDA t with truncation and many illustrative numerical results will appear in a second paper.

قيم البحث

اقرأ أيضاً

In emph{Guo et al, arXiv:2005.08288}, we propose a decoupled form of the structure-preserving doubling algorithm (dSDA). The method decouples the original two to four coupled recursions, enabling it to solve large-scale algebraic Riccati equations an d other related problems. In this paper, we consider the numerical computations of the novel dSDA for solving large-scale continuous-time algebraic Riccati equations with low-rank structures (thus possessing numerically low-rank solutions). With the help of a new truncation strategy, the rank of the approximate solution is controlled. Consequently, large-scale problems can be treated efficiently. Illustrative numerical examples are presented to demonstrate and confirm our claims.
We present fast numerical methods for computing the Hessenberg reduction of a unitary plus low-rank matrix $A=G+U V^H$, where $Gin mathbb C^{ntimes n}$ is a unitary matrix represented in some compressed format using $O(nk)$ parameters and $U$ and $V$ are $ntimes k$ matrices with $k< n$. At the core of these methods is a certain structured decomposition, referred to as a LFR decomposition, of $A$ as product of three possibly perturbed unitary $k$ Hessenberg matrices of size $n$. It is shown that in most interesting cases an initial LFR decomposition of $A$ can be computed very cheaply. Then we prove structural properties of LFR decompositions by giving conditions under which the LFR decomposition of $A$ implies its Hessenberg shape. Finally, we describe a bulge chasing scheme for converting the initial LFR decomposition of $A$ into the LFR decomposition of a Hessenberg matrix by means of unitary transformations. The reduction can be performed at the overall computational cost of $O(n^2 k)$ arithmetic operations using $O(nk)$ storage. The computed LFR decomposition of the Hessenberg reduction of $A$ can be processed by the fast QR algorithm presented in [8] in order to compute the eigenvalues of $A$ within the same costs.
New real structure-preserving decompositions are introduced to develop fast and robust algorithms for the (right) eigenproblem of general quaternion matrices. Under the orthogonally JRS-symplectic transformations, the Francis JRS-QR step and the JRS- QR algorithm are firstly proposed for JRS-symmetric matrices and then applied to calculate the Schur forms of quaternion matrices. A novel quaternion Givens matrix is defined and utilized to compute the QR factorization of quaternion Hessenberg matrices. An implicit double shift quaternion QR algorithm is presented with a technique for automatically choosing shifts and within real operations. Numerical experiments are provided to demonstrate the efficiency and accuracy of newly proposed algorithms.
163 - Qing Cheng , Jie Shen 2021
We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT) conditions . We then use a predictor-corrector approach to construct a class of positivity schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity, can be implemented with negligible cost. We also present a modification which allows us to construct schemes which, in addition to positivity preserving, is also mass conserving. This new approach is not restricted to any particular spatial discretization and can be combined with various time discretization schemes. We establish stability results for our first- and second-order schemes under a general setting, and present ample numerical results to validate the new approach.
111 - Lukas Einkemmer 2018
In this paper, we propose a numerical method for solving weakly compressible fluid flow based on a dynamical low-rank projector splitting. The low-rank splitting scheme is applied to the Boltzmann equation with BGK collision term, which results in a set of constant coefficient advection equations. This procedure is numerically efficient as a small rank is sufficient to obtain the relevant dynamics (described by the Navier--Stokes equations). The resulting method can be combined with a range of different discretization strategies; in particular, it is possible to implement spectral and semi-Lagrangian methods, which allows us to design numerical schemes that are not encumbered by the sonic CFL condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا