ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Supernova Redshift Uncertainties on the Determination of Cosmological Parameters

117   0   0.0 ( 0 )
 نشر من قبل Charles Steinhardt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Redshifts used in current cosmological supernova samples are measured using two primary techniques, one based on well-measured host galaxy spectral lines and the other based on supernova-dominated spectra. Here, we construct an updated Pantheon catalog with revised redshifts, redshift sources and estimated uncertainties for the entire sample to investigate whether these two techniques yield consistent results. The best-fit cosmological parameters using these two measurement techniques disagree, with a supernova-only sample producing $Omega_m$ 3.2$sigma$ higher and $H_0$ 2.5$sigma$ lower than a hostz-only sample, and we explore several possible sources of bias which could result from using the lower-precision supernova-dominated redshifts. In a pilot study, we show that using a host redshift-only subsample will generically produce lower $Omega_m$ and matter density $Omega_m h^2$ and slightly higher $H_0$ than previous analysis which, for the Pantheon dataset, could result in supernova and CMB measurements agreeing on $Omega_m h^2$ despite tension in $H_0$. To obtain rigorous results, though, the Pantheon catalog should be improved by obtaining host spectra for supernova that have faded and future surveys should be designed to use host galaxy redshifts rather than lower-precision methods.



قيم البحث

اقرأ أيضاً

General relativistic corrections to the galaxy power spectrum appearing at the horizon scale, if neglected, may induce biases on the measured values of the cosmological parameters. In this paper, we study the impact of general relativistic effects on non standard cosmologies such as scenarios with a time dependent dark energy equation of state, with a coupling between the dark energy and the dark matter fluids or with non-Gaussianities. We then explore whether general relativistic corrections affect future constraints on cosmological parameters in the case of a constant dark energy equation of state and of non-Gaussianities. We find that relativistic corrections on the power spectrum are not expected to affect the foreseen errors on the cosmological parameters nor to induce large biases on them.
103 - Jun-Hwan Choi 2009
We investigate the effects of the change of cosmological parameters and star formation (SF) models on the cosmic SF history using cosmological smoothed particle hydrodynamics (SPH) simulations based on the cold dark matter (CDM) model. We vary the co smological parameters within 1-sigma error from the WMAP best-fit parameters, and find that such changes in cosmological parameters mostly affect the amplitude of the cosmic SF history. At high redshift (hereafter high-z), the star formation rate (SFR) is sensitive to the cosmological parameters that control the small-scale power of the primordial power spectrum, while the cosmic matter content becomes important at lower redshifts. We also test two new SF models: 1) the `Pressure model based on the work by Schaye & Dalla Vecchia (2008), and 2) the `Blitz model that takes the effect of molecular hydrogen formation into account, based on the work by Blitz & Rosolowsky (2006). Compared to the previous conventional SF model, the Pressure model reduces the SFR in low-density regions and shows better agreement with the observations of the Kennicutt-Schmidt law. This model also suppresses the early star formation and shifts the peak of the cosmic SF history toward lower redshift, more consistently with the recent observational estimates of cosmic SFR density. The simulations with the new SF model also predict lower global stellar mass densities at high-z, larger populations of low-mass galaxies and a higher gas fraction in high-z galaxies. Our results suggest that there is room left in the model uncertainties to reconcile the discrepancy that was found between the theory and observations of cosmic SF history and stellar mass density. Nevertheless, our simulations still predict higher stellar mass densities than most of the observational estimates.
Calibration uncertainties have been the leading systematic uncertainty in recent analyses using type Ia Supernovae (SNe Ia) to measure cosmological parameters. To improve the calibration, we present the application of Spectral Energy Distribution (SE D)-dependent chromatic corrections to the supernova light-curve photometry from the Dark Energy Survey (DES). These corrections depend on the combined atmospheric and instrumental transmission function for each exposure, and they affect photometry at the 0.01 mag (1%) level, comparable to systematic uncertainties in calibration and photometry. Fitting our combined DES and low-z SN Ia sample with Baryon Acoustic Oscillation (BAO) and Cosmic Microwave Background (CMB) priors for the cosmological parameters $Omega_{rm m}$ (the fraction of the critical density of the universe comprised of matter) and w (the dark energy equation of state parameter), we compare those parameters before and after applying the corrections. We find the change in w and $Omega_{rm m}$ due to not including chromatic corrections are -0.002 and 0.000, respectively, for the DES-SN3YR sample with BAO and CMB priors, consistent with a larger DES-SN3YR-like simulation, which has a w-change of 0.0005 with an uncertainty of 0.008 and an $Omega_{rm m}$ change of 0.000 with an uncertainty of 0.002 . However, when considering samples on individual CCDs we find large redshift-dependent biases (approximately 0.02 in distance modulus) for supernova distances.
166 - D. Scolnic , A. Rest , A. Riess 2013
We probe the systematic uncertainties from 113 Type Ia supernovae (SNIa) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. (2013) describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ~0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037pm0.031 mag for host galaxies with high and low masses. Assuming flatness in our analysis of only SNe measurements, we find $w = {-1.120^{+0.360}_{-0.206}textrm{(Stat)} ^{+0.269}_{-0.291}textrm{(Sys)}}$. With additional constraints from BAO, CMB(Planck) and H0 measurements, we find $w = -1.166^{+0.072}_{-0.069}$ and $Omega_M=0.280^{+0.013}_{-0.012}$ (statistical and systematic errors added in quadrature). Significance of the inconsistency with $w=-1$ depends on whether we use Planck or WMAP measurements of the CMB: $w_{textrm{BAO+H0+SN+WMAP}}=-1.124^{+0.083}_{-0.065}$.
When combining cosmological and oscillations results to constrain the neutrino sector, the question of the propagation of systematic uncertainties is often raised. We address this issue in the context of the derivation of an upper bound on the sum of the neutrino masses ($Sigma m_ u$) with recent cosmological data. This work is performed within the ${{mathrm{Lambda{CDM}}}}$ model extended to $Sigma m_ u$, for which we advocate the use of three mass-degenerate neutrinos. We focus on the study of systematic uncertainties linked to the foregrounds modelling in CMB data analysis, and on the impact of the present knowledge of the reionisation optical depth. This is done through the use of different likelihoods built from Planck data. Limits on $Sigma m_ u$ are derived with various combinations of data, including the latest Baryon Acoustic Oscillations (BAO) and Type Ia Supernovae (SN) results. We also discuss the impact of the preference for current CMB data for amplitudes of the gravitational lensing distortions higher than expected within the ${{mathrm{Lambda{CDM}}}}$ model, and add the Planck CMB lensing. We then derive a robust upper limit: $Sigma m_ u< 0.17hbox{ eV at }95% hbox{CL}$, including 0.01 eV of foreground systematics. We also discuss the neutrino mass repartition and show that todays data do not allow one to disentangle normal from inverted hierarchy. The impact on the other cosmological parameters is also reported, for different assumptions on the neutrino mass repartition, and different high and low multipole CMB likelihoods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا