ترغب بنشر مسار تعليمي؟ اضغط هنا

Long term measurement of the $^{87}$Sr clock frequency at the limit of primary Cs clocks

64   0   0.0 ( 0 )
 نشر من قبل Christian Lisdat
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a series of 42 measurements of the transition frequency of the 429~THz (5s$^2$)~$^1$S$_0$--(5s5p)~$^3$P$_0$ line in $^{87}$Sr taken over three years from 2017 to 2019. They have been performed at the Physikalisch-Technische Bundesanstalt (PTB) between the laboratory strontium lattice clock and the primary caesium fountain clocks CSF1 and CSF2. The length of each individual measurement run has been extended by use of a hydrogen maser as flywheel to improve the statistical uncertainty given by the Cs clocks. We determine an averaged transition frequency of $429:228:004:229:873.00(0.07)$~Hz with $1.5times10^{-16}$ fractional uncertainty, at the limit of the current realization of the unit hertz. Analysis of the data provides an improved limit on the coupling of the gravitational potential of the Sun to the proton--electron mass ratio $mu$, and confirms the limits on its temporal drift.

قيم البحث

اقرأ أيضاً

Vapor cell atomic clocks exhibit reduced frequency stability for averaging time between about one hundred and a few thousand seconds. Here we report a study on the impact of the main parameters on the mid-to-long term instability of a buffer-gas vapo r cell Cs clock, based on coherent population trapping (CPT). The CPT signal is observed on the Cs D1 line transmission, using a double $Lambda$ scheme and a Ramsey interrogation technique. The effects on the clock frequency of the magnetic field, the cell temperature, and the laser intensities are reported. We show in particular that the laser intensity shift is temperature dependent. Along with the laser intensity ratio and laser polarization properties, this is one of the most important parameters.
We demonstrate a one-dimensional optical lattice clock with a spin-polarized fermionic isotope designed to realize a collision-shift-free atomic clock with neutral atom ensembles. To reduce systematic uncertainties, we developed both Zeeman shift and vector light-shift cancellation techniques. By introducing both an H-maser and a Global Positioning System (GPS) carrier phase link, the absolute frequency of the $^1S_0(F=9/2) - {}^3P_0(F=9/2)$ clock transition of the $^{87}$Sr optical lattice clock is determined as 429,228,004,229,875(4) Hz, where the uncertainty is mainly limited by that of the frequency link. The result indicates that the Sr lattice clock will play an important role in the scope of the redefinition of the ``second by optical frequency standards.
We report the binding energy of $^{87}$Rb$^{133}$Cs molecules in their rovibrational ground state measured using an offset-free optical frequency comb based on difference frequency generation technology. We create molecules in the absolute ground sta te using stimulated Raman adiabatic passage (STIRAP) with a transfer efficiency of 88%. By measuring the absolute frequencies of our STIRAP lasers, we find the energy-level difference from an initial weakly-bound Feshbach state to the rovibrational ground state with a resolution of 5 kHz over an energy-level difference of more than 114 THz; this lets us discern the hyperfine splitting of the ground state. Combined with theoretical models of the Feshbach state binding energies and ground-state hyperfine structure, we determine a zero-field binding energy of $htimes114,268,135,237(5)(50)$ kHz. To our knowledge, this is the most accurate determination to date of the dissociation energy of a molecule.
The temperature dependence of the Cs clock transition frequency in a vapor cell filled with Ne buffer gas has been measured. The experimental setup is based on the coherent population trapping (CPT) technique and a temporal Ramsey interrogation allow ing a high resolution. A quadratic dependence of the frequency shift is shown. The temperature of the shift cancellation is evaluated. The actual Ne pressure in the cell is determined from the frequency shift of the 895nm optical transition. We can then determine the Cs-Ne collisional temperature coefficients of the clock frequency. These results can be useful for vapor cell clocks and especially for future micro-clocks.
The $^1mathrm{S}_0$-$^3mathrm{P}_0$ clock transition frequency $ u_text{Sr}$ in neutral $^{87}$Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the $1times 10^{-15}$ level makes $ u_text{Sr}$ the best agreed-upon optical atomic frequency. We combine periodic variations in the $^{87}$Sr clock frequency with $^{199}$Hg$^+$ and H-maser data to test Local Position Invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant $alpha$, electron-proton mass ratio $mu$ and light quark mass. Furthermore, after $^{199}$Hg$^+$, $^{171}$Yb$^+$ and H, we add $^{87}$Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of $alpha$ and $mu$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا