ترغب بنشر مسار تعليمي؟ اضغط هنا

Observed and estimated prevalence of Covid-19 in Italy: Is it possible to estimate the total cases from medical swabs data?

184   0   0.0 ( 0 )
 نشر من قبل Francesca Bassi
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Francesca Bassi




اسأل ChatGPT حول البحث

During the current Covid-19 pandemic in Italy, official data are collected with medical swabs following a pure convenience criterion which, at least in an early phase, has privileged the exam of patients showing evident symptoms. However, there are evidences of a very high proportion of asymptomatic patients (e. g. Aguilar et al., 2020; Chugthai et al, 2020; Li, et al., 2020; Mizumoto et al., 2020a, 2020b and Yelin et al., 2020). In this situation, in order to estimate the real number of infected (and to estimate the lethality rate), it should be necessary to run a properly designed sample survey through which it would be possible to calculate the probability of inclusion and hence draw sound probabilistic inference. Some researchers proposed estimates of the total prevalence based on various approaches, including epidemiologic models, time series and the analysis of data collected in countries that faced the epidemic in earlier time (Brogi et al., 2020). In this paper, we propose to estimate the prevalence of Covid-19 in Italy by reweighting the available official data published by the Istituto Superiore di Sanit`a so as to obtain a more representative sample of the Italian population. Reweighting is a procedure commonly used to artificially modify the sample composition so as to obtain a distribution which is more similar to the population (Valliant et al., 2018). In this paper, we will use post-stratification of the official data, in order to derive the weights necessary for reweighting them using age and gender as post-stratification variables thus obtaining more reliable estimation of prevalence and lethality.

قيم البحث

اقرأ أيضاً

We apply optimal control theory to a generalized SEIR-type model. The proposed system has three controls, representing social distancing, preventive means, and treatment measures to combat the spread of the COVID-19 pandemic. We analyze such optimal control problem with respect to real data transmission in Italy. Our results show the appropriateness of the model, in particular with respect to the number of quarantined/hospitalized (confirmed and infected) and recovered individuals. Considering the Pontryagin controls, we show how in a perfect world one could have drastically diminish the number of susceptible, exposed, infected, quarantined/hospitalized, and death individuals, by increasing the population of insusceptible/protected.
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has led to a wide range of non-pharmaceutical interventions being implemented around the world to curb transmission. However, the economic and social costs of some of these measures, especi ally lockdowns, has been high. An alternative and widely discussed public health strategy for the COVID-19 pandemic would have been to shield those most vulnerable to COVID-19, while allowing infection to spread among lower risk individuals with the aim of reaching herd immunity. Here we retrospectively explore the effectiveness of this strategy, showing that even under the unrealistic assumption of perfect shielding, hospitals would have been rapidly overwhelmed with many avoidable deaths among lower risk individuals. Crucially, even a small (20%) reduction in the effectiveness of shielding would have likely led to a large increase (>150%) in the number of deaths compared to perfect shielding. Our findings demonstrate that shielding the vulnerable while allowing infections to spread among the wider population would not have been a viable public health strategy for COVID-19, and is unlikely to be effective for future pandemics.
The demographic factors have a substantial impact on the overall casualties caused by the COVID-19. In this study, the spatial association between the key demographic variables and COVID-19 cases and deaths were analyzed using the spatial regression models. Total 13 (for COVID-19 case factor) and 8 (for COVID-19 death factor) key variables were considered for the modelling. Total five spatial regression models such as Geographically weighted regression (GWR), Spatial Error Model (SEM), Spatial Lag Model (SLM), Spatial Error_Lag model (SEM_SLM), and Ordinary Least Square (OLS) were performed for the spatial modelling and mapping of model estimates. The local R2 values, which suggesting the influences of the selected demographic variables on overall casualties caused by COVID-19, was found highest in Italy and the UK. The moderate local R2 was observed for France, Belgium, Netherlands, Ireland, Denmark, Norway, Sweden, Poland, Slovakia, and Romania. The lowest local R2 value for COVID-19 cases was accounted for Latvia and Lithuania. Among the 13 variables, the highest local R2 was calculated for total population (R2 = 0.92), followed by death crude death rate (R2 = 0.9), long time illness (R2 = 0.84), population with age >80 (R2 = 0.59), employment (R2 = 0.46), life expectancy at 65 (R2 = 0.34), crude birth rate (R2 = 0.31), life expectancy (R2 = 0.31), Population with age 65-80 (R2 = 0.29), Population with age 15-24 (R2 = 0.27), Population with age 25-49 (R2 = 0.27), Population with age 0-14 (R2 = 0.23), and Population with age 50-65 (R2 = 0.23), respectively.
73 - Tong Yang , Kai Shen , Sixuan He 2020
Timely, creditable, and fine-granular case information is vital for local communities and individual citizens to make rational and data-driven responses to the COVID-19 pandemic. This paper presents CovidNet, a COVID-19 tracking project associated wi th a large scale epidemic dataset, which was initiated by 1Point3Acres. To the best of our knowledge, the project is the only platform providing real-time global case information of more than 4,124 sub-divisions from over 27 countries worldwide with multi-language supports. The platform also offers interactive visualization tools to analyze the full historical case curves in each region. Initially launched as a voluntary project to bridge the data transparency gap in North America in January 2020, this project by far has become one of the major independent sources worldwide and has been consumed by many other tracking platforms. The accuracy and freshness of the dataset is a result of the painstaking efforts from our voluntary teamwork, crowd-sourcing channels, and automated data pipelines. As of May 18, 2020, the project website has been visited more than 200 million times and the CovidNet dataset has empowered over 522 institutions and organizations worldwide in policy-making and academic researches. All datasets are openly accessible for non-commercial purposes at https://coronavirus.1point3acres.com via a formal request through our APIs.
We demonstrate the ability of statistical data assimilation to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform p olicy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain accurate estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. Given a noiseless measurement of the recovered population, excellent estimates of all quantities are obtained using a temporal baseline of 101 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. With low noise added to the recovered population, accurate state estimates require a lengthening of the temporal baseline of measurements. Estimates of all parameters are sensitive to the contamination, highlighting the need for accurate and uniform methods of reporting. The aim of this paper is to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown parameters to a desired precision, in a model with the complexity required to capture important features of the COVID-19 pandemic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا