ﻻ يوجد ملخص باللغة العربية
DNN/Accelerator co-design has shown great potential in improving QoR and performance. Typical approaches separate the design flow into two-stage: (1) designing an application-specific DNN model with high accuracy; (2) building an accelerator considering the DNN specific characteristics. However, it may fail in promising the highest composite score which combines the goals of accuracy and other hardware-related constraints (e.g., latency, energy efficiency) when building a specific neural-network-based system. In this work, we present a single-stage automated framework, YOSO, aiming to generate the optimal solution of software-and-hardware that flexibly balances between the goal of accuracy, power, and QoS. Compared with the two-stage method on the baseline systolic array accelerator and Cifar10 dataset, we achieve 1.42x~2.29x energy or 1.79x~3.07x latency reduction at the same level of precision, for different user-specified energy and latency optimization constraints, respectively.
Visual Grounding (VG) aims to locate the most relevant region in an image, based on a flexible natural language query but not a pre-defined label, thus it can be a more useful technique than object detection in practice. Most state-of-the-art methods
To speedup Deep Neural Networks (DNN) accelerator design and enable effective implementation, we propose HybridDNN, a framework for building high-performance hybrid DNN accelerators and delivering FPGA-based hardware implementations. Novel techniques
A panoptic driving perception system is an essential part of autonomous driving. A high-precision and real-time perception system can assist the vehicle in making the reasonable decision while driving. We present a panoptic driving perception network
Networked automation systems (NAS) are characterized by confluence of control, computation, communication and Information (C3I) technologies. Design decisions of one domain are affected by the constraints posed by others. Reliable NAS design should a
Spatiotemporal action localization requires the incorporation of two sources of information into the designed architecture: (1) temporal information from the previous frames and (2) spatial information from the key frame. Current state-of-the-art app