ﻻ يوجد ملخص باللغة العربية
We discuss the violation of quark-flavor symmetry at high temperatures, induced from nonperturbative thermal loop corrections and axial anomaly, based on a three-flavor linear-sigma model including an axial-anomaly induced-flavor breaking term. We employ a nonperturbative analysis following the Cornwall-Jackiw-Tomboulis formalism, and show that the model undergoes a chiral crossover with a pseudo-critical temperature, consistently with lattice observations. We find following features regarding the flavor breaking eminent around and above the pseudo-critical temperature: i) up-and down-quark condensates drop faster than the strange quarks toward the criticality, but still keep nonzero value even going far above the critical temperature; ii) the introduced anomaly-related flavor-breaking effect acts as a catalyzer toward the chiral restoration, and reduces the amount of flavor breaking in the up, down and strange quark condensates; iii) a dramatic deformation for the meson flavor mixing structure is observed, in which the anomaly-induced favor breaking is found to be almost irrelevant; iv) the meson spectroscopy gets corrected by the net nonperturbative flavor breaking effects, where the scalar meson mass hierarchy (inverse mass hierarchy) is significantly altered by the presence of the anomaly-related flavor breaking; v) the topological susceptibility significantly gets the contribution from the surviving strange quark condensate, which cannot be dictated by the chiral perturbation theory, and deviates from the dilute instanton gas prediction. There the anomaly-induced flavor breaking plays a role of the destructive interference for the net flavor violation; vi) the U(1)_A breaking is enhanced by the strange quark condensate, which may account for the tension in the effective U(1)_A restoration observed on lattices with two flavors and 2+1 flavors near the chiral limit.
We demonstrate that the QCD topological susceptibility nonperturbatively gets a significant contribution signaled by flavor-nonuniversal quark condensates at around the pseudo-critical temperature of the chiral crossover. It implies a remarkable flav
We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon ($B$), strangeness ($S$), electric charge ($Q$), and isospin ($I$) chemical potentials $mu_{X=B,Q,S,I}$. The results were obtained usin
The chiral magnetic effect (CME) is an exact statement that connects via the axial anomaly the electric current in a system consisting of interacting fermions and gauge field with chirality imbalance that is put into a strong external magnetic field.
At small transverse momentum $q_T$, transverse-momentum dependent parton distribution functions (TMDPDFs) arise as genuinely nonperturbative objects that describe Drell-Yan like processes in hadron collisions as well as semi-inclusive deep-inelastic
We present a lattice QCD based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass. We propose and calculate two novel estimators for the chiral transition temperature