ﻻ يوجد ملخص باللغة العربية
The SIR evolutionary model predicts too sharp a decrease of the fractions of people infected with COVID-19 in France after the start of the national lockdown, compared to what is observed. I fit the daily hospital data: arrivals in regular and critical care units, releases and deaths, using extended SEIR models. These involve ratios of evolutionary timescales to branching fractions, assumed uniform throughout a country, and the basic reproduction number, $R_0$, before and during the national lockdown, for each region of France. The joint-region Bayesian analysis allows precise evaluations of the time/fraction ratios and pre-hospitalized fractions. The hospital data are well fit by the models, except the arrivals in critical care, which decrease faster than predicted, indicating better treatment over time. Averaged over France, the analysis yields $R_0$= 3.4$pm$0.1 before the lockdown and 0.65$pm$0.04 (90% c.l.) during the lockdown, with small regional variations. On 11 May 2020, the Infection Fatality Rate in France was 4 $pm$1% (90% c.l.), while the Feverish vastly outnumber the Asymptomatic, contrary to the early phases. Without the lockdown nor social distancing, over 2 million deaths from COVID-19 would have occurred throughout France, while a lockdown that would have been enforced 10 days earlier would have led to less than 1000 deaths. The fraction of immunized people reached a plateau below 1% throughout France (3% in Paris) by late April 2020 (95% c.l.), suggesting a lack of herd immunity. The widespread availability of face masks on 11 May, when the lockdown was partially lifted, should keep $R_0$ below unity if at least 46% of the population wear them outside their home. Otherwise, without enhanced other social distancing, a second wave is inevitable and cause the number of deaths to triple between early May and October (if $R_0$=1.2) or even late June (if $R_0$=2).
The transmission of COVID-19 is dependent on social contacts, the rate of which have varied during the pandemic due to mandated and voluntary social distancing. Changes in transmission dynamics eventually affect hospital admissions and we have used t
Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine
COVID-19 pandemic represents an unprecedented global health crisis in the last 100 years. Its economic, social and health impact continues to grow and is likely to end up as one of the worst global disasters since the 1918 pandemic and the World Wars
COVID-19 is a new pandemic disease that is affecting almost every country with a negative impact on social life and economic activities. The number of infected and deceased patients continues to increase globally. Mathematical models can help in deve
Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no reco