ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for millicharged particles in proton-proton collisions at $sqrt{s} = 13$ TeV

309   0   0.0 ( 0 )
 نشر من قبل Christopher S. Hill
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Ball




اسأل ChatGPT حول البحث

We report on a search for elementary particles with charges much smaller than the electron charge using a data sample of proton-proton collisions provided by the CERN Large Hadron Collider in 2018, corresponding to an integrated luminosity of 37.5 fb$^{-1}$ at a center-of-mass energy of 13 TeV. A prototype scintillator-based detector is deployed to conduct the first search at a hadron collider sensitive to particles with charges ${leq}0.1e$. The existence of new particles with masses between 20 and 4700 MeV is excluded at 95% confidence level for charges between $0.006e$ and $0.3e$, depending on their mass. New sensitivity is achieved for masses larger than $700$ MeV.



قيم البحث

اقرأ أيضاً

We report on the expected sensitivity of dedicated scintillator-based detectors at the LHC for elementary particles with charges much smaller than the electron charge. The dataset provided by a prototype scintillator-based detector is used to charact erise the performance of the detector and provide an accurate background projection. Detector designs, including a novel slab detector configuration, are considered for the data taking period of the LHC to start in 2022 (Run 3) and for the high luminosity LHC. With the Run 3 dataset, the existence of new particles with masses between 10 MeV and 45 GeV could be excluded at 95% confidence level for charges between 0.003e and 0.3e, depending on their mass. With the high luminosity LHC dataset, the expected limits would reach between 10 MeV and 80 GeV for charges between 0.0018e and 0.3e, depending on their mass
Production of $B_c^+$ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of $2.0~{rm fb}^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+to J/psi pi^+$ and $B^+to J/psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_{rm T} < 20~{rm GeV}/c$ and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683pm0.018pm0.009)%$, where the first uncertainty is statistical and the second systematic.
82 - CMS Collaboration 2019
A search is presented for a Higgs boson that is produced in association with a Z boson and that decays to an undetected particle together with an isolated photon. The search is performed by the CMS Collaboration at the Large Hadron Collider using a d ata set corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded at a center-of-mass energy of 13 TeV. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for associated Higgs and Z boson production and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a mass of 125 GeV, assuming the standard model production cross section, this corresponds to an observed (expected) upper limit on this branching fraction of 4.6 (3.6)% at 95% confidence level. These are the first limits on Higgs boson decays to final states that include an undetected massless dark photon.
The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb$^{-1}$. No magnetic charge exceeding $0.5g_{rm D}$ (where $g_{rm D}$ is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV$leq m leq$ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for $1g_{rm D}leq|g|leq 6g_{rm D}$, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for $1g_{rm D}leq|g|leq 4g_{rm D}$. Under the assumption of Drell-Yan cross sections, mass limits are derived for $|g|=2g_{rm D}$ and $|g|=3g_{rm D}$ for the first time at the LHC, surpassing the results from previous collider experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا