ﻻ يوجد ملخص باللغة العربية
We present the galaxy power spectrum in general relativity. Using a novel approach, we derive the galaxy power spectrum taking into account all the relativistic effects in observations. In particular, we show independently of survey geometry that relativistic effects yield no divergent terms (proportional to $k^{-4}P_m(k)$ or $k^{-2}P_m(k)$ on all scales) that would mimic the signal of primordial non-Gaussianity. This cancellation of such divergent terms is indeed expected from the equivalence principle, meaning that any perturbation acting as a uniform gravity on the scale of the experiment cannot be measured. We find that the unphysical infrared divergence obtained in previous calculations occurred only due to not considering all general relativistic contributions consistently. Despite the absence of divergent terms, general relativistic effects represented by non-divergent terms alter the galaxy power spectrum at large scales (smaller than the horizon scale). In our numerical computation of the full galaxy power spectrum, we show the deviations from the standard redshift-space power spectrum due to these non-divergent corrections. We conclude that, as relativistic effects significantly alter the galaxy power spectrum at $klesssim k_{eq}$, they need to be taken into account in the analysis of large-scale data.
Measurements of the clustering of galaxies in Fourier space, and at low wavenumbers, offer a window into the early Universe via the possible presence of scale dependent bias generated by Primordial Non Gaussianites. On such large scales a Newtonian t
We perform theoretical and numerical studies of the full relativistic two-point galaxy correlation function, considering the linear-order scalar and tensor perturbation contributions and the wide-angle effects. Using the gauge-invariant relativistic
We discuss the question of gauge choice when analysing relativistic density perturbations at second order. We compare Newtonian and General Relativistic approaches. Some misconceptions in the recent literature are addressed. We show that the comoving
Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled gala
We investigate the potential of the galaxy power spectrum to constrain compensated isocurvature perturbations (CIPs), primordial fluctuations in the baryon density that are compensated by fluctuations in CDM density to ensure an unperturbed total mat